RISC-V®

RISC-V ISA The Entropy-Source Standard

Presented at the Cryptarchi Workshop May 30, 2022 – Porquerolles, France By G. Richard Newell (Associate Technical Fellow, Microchip Technology, Inc.)

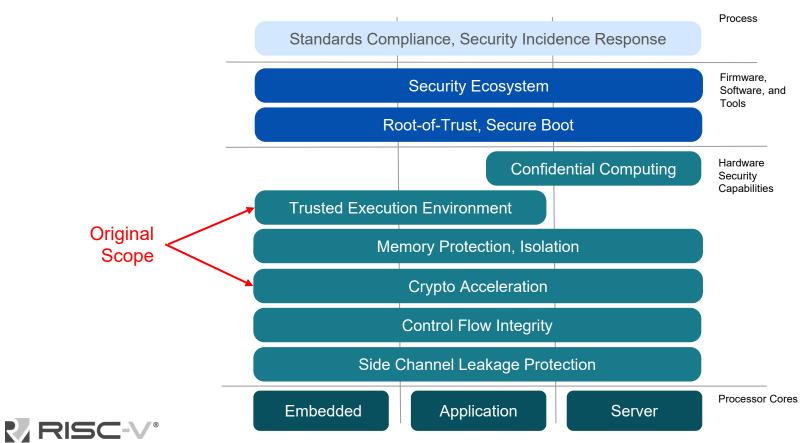
RISC-V Security Rationale

• Clean-slate architecture invites new hardware security solutions

- Open security model accelerates hardware security innovation
- Opportunity to incorporate security industry learnings & best practices
- Open governance facilitates collaboration on best security approach
- Royalty free model enables new open-source hardware security solutions

RISC-V International Security Organization

From the Archives (circa 2015/2016)...


One Security Committee – a Chair and a Vice-Chair (and not much else!)

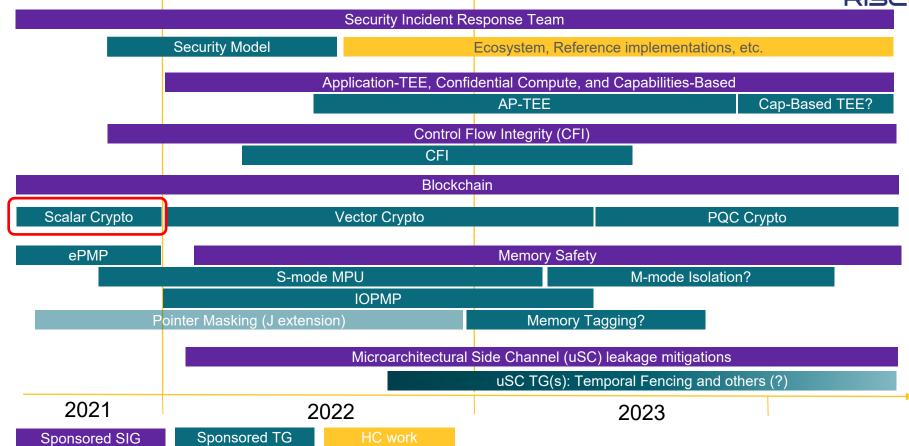
RISC-V Technical Organization 2022

	Board of Directors (BoD)										
Technical Steering Committee (TSC)						Technical Steering Committee (TSC)	Architecture Profiles		CTO, Staff		
								Unpriv IC	Architecture Profiles (Priv IC	
Industry Verticals SIG					$\sim $				ure Review (IC chairs		
Indu	istry	ver	пса	15 51	G		Privileged Software HC (Components, Interfaces, OSs, Platforms)	IMAFDQC		1.11	
							Applications & Tools HC (Application, Libraries, Runtimes, Tools)	Zb[abcs] Memory Model		<i>ePMP</i> 1.12 (Priv)	
						_	Security HC	Crypto Scalar Zfinx		H	
						onta	Technology Sector HC				
						Horizontal	SoC Infra. HC (RAS, Trace & Debug)	Vector SIG FP SIG			
						Ť	Implementation HC	=			
	, <u> </u>		Communications		Defense/MilAero		ISA Infrastructure HC	V phase 2			
Consumer	Center		ŋ	s	<u>ξ</u>			Crypto GOST-R TG			
Consumer	ē ē	Finance	nu	Gas	l se			Packed SIMD TG			
	Data	Jan	Ē	Oil &	ll fe			J TG			
U S A	č Ö	Ē	ပိ	ö	گ			Code Size TG		AIA TG	
						-		Crypto Vector TG		SMPU TG	′
								Bfloat16 TG		FastInt TG	
2	RISC-V°					8		FT: Zmmul, Zihintntl, WRS		CMO 2 TG	

Security Scope

Security Horizontal Committee and sub-committees

Security HC								
Crypto Vector TG	Trusted Computing SIG	Memory Safety SIG						
Crypto GOST-R TG	AP-TEE TG	IOPMP TG						
Security Model TG	Secure Boot TG	SMPU TG						
Security Response SIG								
Blockchain SIG								
Control Flow Integrity SIG								
Microarchitecture Side Channel SIG								



Security HC - Roadmap

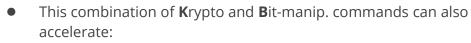
8

Specification Plan

	CY22-Q1	CY22-Q2	CY22-Q3	CY22-Q4	CY23-Q1	CY23-Q2	CY23-Q3	CY23-Q4
Security Model	Inception Plan		Develop		Freeze Rat-Ready			
AP-TEE (ISA + non-ISA)	Inception	Plan	Develop	Freeze	Rat-Read	ly		
CFI (ISA)	Inception	Plan	De	velop	Freeze	Rat-F	Ready	
Vector crypto	De	/elop	Freeze	Rat-F	Ready			
S-mode MPU	Inception	Plan	Develop	Freez	ze Rat-R	leady		
IOPMP (non-ISA)	Inceptio	on Pla	an	Develop	Freeze	Rat-	Ready	
uSC leakage		Inception		Plan		Develop		Freeze

RISC-V Security 5 year horizon

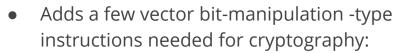
- Platform Security Model outlining RISC-V security capacities and system's integration
- Tools and Software support for RISC-V security capabilities
- Protection against side-channel information leakage at the hardware level
- Robustness capabilities to prevent malicious manipulation of e.g., code execution flows
- Cryptography support for small to large devices, including Post-Quantum Crypto
- Memory isolation and Trusted Execution Environments to securely separate applications from each other
- Support for Confidential Compute and Capability based models to enhance application and data privacy
- Blockchain technology on RISC-V based systems


RISC-V Cryptographic Extensions Scalar Crypto Vector Crypto

Overview: Scalar Crypto (a.k.a. "K" for "Krypto")

Scalar Cryptographic Extension:

- Adds Functionality required for cryptography to Unprivileged Spec.
 - Cryptographic algorithms acceleration
 - Cryptographic-quality Random bits
- True random bits generation
 - Entropy source
- Performance-driven proposals:
 - New dedicated instructions:
 - NIST: AES / SHA2
 - ShangMi: SM3 / SM4
 - Fine-grained options for highly-constrained systems
 - Some required instructions *shared* with Bitmanip:
 - Rotations / Permutations
 - Carryless Multiply
 - Data-independent timing guarantees

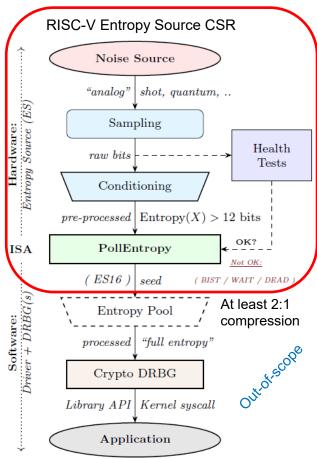

- Asymmetric crypto (e.g., ECC, RSA)
- GMAC (needed for AES-GCM)
- SHA3 (needed for post-quantum crypto)
- o Many lightweight algorithms like PRESENT
- Bit-slice implementations
 - One possible approach for DPA resistance
- "**Firsts**" First ISA to do this for Cryptography:
 - Lightweight crypto. instructions using GP X-registers (vs. round-based using vector/SIMD registers)
 - Algorithms still done largely in software, but accelerated with lightweight instructions
 - Entropy source (vs. full random number generator)
 - supports any security strength in software
 - Compatible with modern view of TRNGs
 - Timing guarantees on a subset of the full RISC-V ISA

Overview: Vector Crypto

Vector Cryptographic Extension:

- Built on top of the base vector extension
 - RISC-V -style variable-length vector support for crypto using vector registers
 - Extremely broad range of implementations possible from narrow to wide data-paths
- Low-latency limited-rounds instructions for AES, SHA2 (i.e., SHA-256, SHA-512)
- Full-rounds instructions for AES
- Round-based for SM3, SM4 (2022, time permitting)
- AES modes (e.g., AES-CBC) and SHA2 variations (e.g., SHA-384) done in software taking advantage of the commands above

- Rotations & Permutations not already in the base vector extension
- Vector Carry-less Multiply
- In total, these commands can also accelerate:
 - o SHA3
 - Asymmetric algorithms (ECC, RSA)
 - GMAC (needed for AES-GCM)
- "Firsts" First ISA to do this for Cryptography:
 - Full-round instructions that facilitate building side-channel-resistant micro-architectures (if desired)



The RISC-V Entropy Source Ratified Dec. 2021

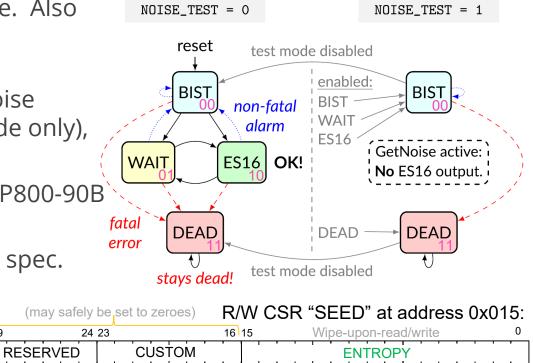
Overview: Entropy Source

- Provides standardized polling interface to a modern Entropy Source
- DRBG/PRNG post processing is out-of-scope
 - Done on software side
- Minimum Entropy guarantee:
 - 128 bits "full entropy" per 256 bits, plus one or more of:
 - 0.75 min-entropy rate per SP800-99B/C (192 bits per 256)
 - 0.997 Shannon entropy rate (per AIS-31 PTG.2)
 - Post-Quantum level 5 security
- 2:1 compression required of user on output
 - 512 bits → (e.g.) 2:1 SHA → 256-bit DRBG "seed"
- No limit on security strength... just draw more bits out
 - If an implementation *does* limit security strength (discouraged, or for virtual sources), it must support 256-bit security strength, minimum

Overview: Entropy Source (cont.)

31 30 29

OPS⁻


- SEED CSR available in M-mode. Also available in S- & U-Modes
 If M-mode allows it
- Optional standardized raw noise interface **GetNoise** (in M-mode only), for qualification testing
- Designed to work with NIST SP800-90B & BSI AIS31

zero extend

- Works with RISC-V hypervisor spec.
- Can be virtualized

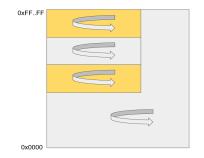
XLEN-1

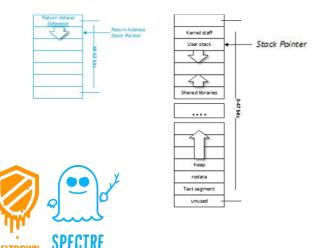
10

We need your help:

Security@lists.riscv.org

Backup Slides



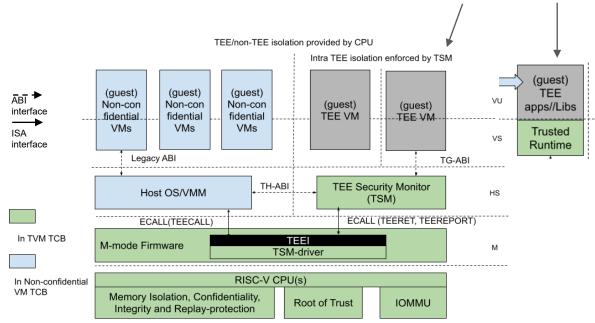

Robustness

- Pointer Masking
 - actual_address = (requested_address & ~mpmmask) | mpmbase
 - Software based memory tagging
 - Memory bounding

under development:

- Control Flow Integrity
 - Shadow Stack
 - Labelled Landing Pad
- MicroArchitectural Side Channel Leakage
 - $\circ \quad \text{An anomaly} \quad$
 - Speculation Barriers fence.t

Cryptography

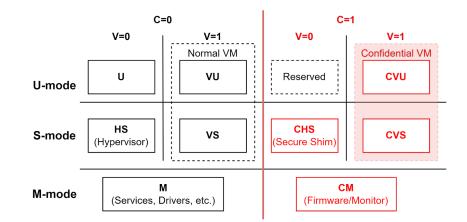

- Scalar Extension Ratified
- Vector Extension 2022
- Post Quantum under discussion

Trusted Computing

Under Development:

- Trusted Execution Environment
- APT TEE i/f to allow support on current ratified ISA
- Extensions possible to improve performance, security etc

Conf. VMs,


containers

Conf. apps, libraries

Trusted Computing (2)

Under Development:

- Confidential Computing
 - \circ Confidential VMs
- Extension of APP TEE
- Incorporate attestation standards

Future Potential

Requirement Under discussion

- Lightweight TEE
 - Potential Memory isolation scheme for small M/U systems.
 - Additional context to M mode
- Capability Based Security
 - CHERI

SIRT

- Ensure continuity of the RISC-V Security Incident Response Team (SIRT)
- Institute and manage a responsible disclosure process
- Triage incoming security disclosures
- Maintain a catalogue of security issues