

Hardware implementation of Ascon authenticated cipher based on CMOS/STT-MRAM

CryptArchi 2022

<u>Nathan Roussel</u>, Olivier Potin, Jean-Baptiste Rigaud and Jean-Max Dutertre

nathan.roussel@emse.fr

May 30 - May 31

Outline

Introduction

- Context
- What is MRAM ?
- Targeted CMOS technology
- LightWeight Cryptography (LWC): Ascon
- 2 Benefits of hybridization
 - What does hybridization mean ?
 - Case 1: Sudden power failure
 - Case 2: Sleep mode
- Non-volatile implementation of Ascon

- What we can expect to hybridize ?
- Flow overview
- Non-volatile flip flop (NVFF)
- Electrical simulation
- Layout description
- Liberty file
- Logical model
- Synthesis
- Power estimation
- Futur works and conclusionReferences

Context

Context

- Tremendous growth of Internet of Things objects
- These objects must be reliable, low power consuming and secure [1]
- LightWeight Cryptography (LWC) algorithms to protect IoT
- Secure implementation of LWC to face physical attacks

Issue

How to strengthen LWC algorithms with the lowest energy impact ?

Context

Context

- Tremendous growth of Internet of Things objects
- These objects must be reliable, low power consuming and secure [1]
- LightWeight Cryptography (LWC) algorithms to protect IoT
- Secure implementation of LWC to face physical attacks

lssue

How to strengthen LWC algorithms with the lowest energy impact ?

Proposal

Hardware implementation of LWC algorithm based on CMOS/STT-MRAM: MISTRAL project (ANR-19-CE39-0010) [2]

What is MRAM ?

- Magnetic Tunnel Junction (MTJ)
 - Reference Layer
 - Oxyde
 - Storage Layer (Free Layer)

Targeted CMOS technology

CMOS technology

- Project choice: low power technology, mature node
- CMOS 28nm Fully Depleted Silicon On Insulator (FD-SOI) from STMicroelectronics [3]

Bulk

LightWeight Cryptography (LWC): Ascon

- Ascon, authenticated encryption with associated data
- Part of the final phase of NIST LWC contest [4]

Authenticated Encryption

CONFIDENTIALITY INTEGRITY AUTHENTIFICATION

Introduction

- Context
- What is MRAM ?
- Targeted CMOS technology
- LightWeight Cryptography (LWC): Ascon

Benefits of hybridization

- What does hybridization mean ?
- Case 1: Sudden power failure
- Case 2: Sleep mode

```
Non-volatile implementation of Ascon
```

- What we can expect to hybridize ?
- Flow overview
- Non-volatile flip flop (NVFF)
- Electrical simulation
- Layout description
- Liberty file
- Logical model
- Synthesis
- Power estimation
- Futur works and conclusion
- References

What does hybridization mean ?

-

ī

ii

ī

i

Case 1: Sudden power failure Ascon CMOS

Case 1: Sudden power failure Ascon CMOS/MRAM

Case 2: Sleep mode

 $CMOS\ consumption$

CMOS/MRAM consumption

Introduction

- Context
- What is MRAM ?
- Targeted CMOS technology
- LightWeight Cryptography (LWC): Ascon

2 Benefits of hybridization

- What does hybridization mean ?
- Case 1: Sudden power failure
- Case 2: Sleep mode

```
Non-volatile implementation of Ascon
```

- What we can expect to hybridize ?
- Flow overview
- Non-volatile flip flop (NVFF)
- Electrical simulation
- Layout description
- Liberty file
- Logical model
- Synthesis
- Power estimation
- Futur works and conclusion
- References

What we can expect to hybridize ?

Operating conditions

- Ascon-128 / One round computation in a single clock cycle
- Frequency 100*MHz*, Voltage 1V

Flow overview

11 / 24

Non-volatile flip flop (NVFF) Writing circuit

Non-volatile Flip Flop Design 12 / 24

- 12 / 2

Vdd

Electrical simulation

13 / 24

Layout description

Layout considerations

- Creating the layout of non-volatile flip flop is a difficult task
- Producing a layout as optimized as the layout from ST Design Kit is impracticable at our level

Layout specifications

- $\bullet\,$ Considering non-volatile flip flop area equals to ST flip flop area + 20 $\%\,$
- Seems fair regarding transistor sizing

Liberty file

Non-volatile Flip Flop Design

Logical model

Verilog model for RTL/Post synthesis simulation

- Primitives describing the MTJ and the NVFF
- Delay/Constraint statements for SDF matching

Synthesis

Design Vision (Synopsys)	 No synthesis is correctly gener 	 No synthesis issues encountered as the liberty file is correctly generated 		
Synthesis	<u>Area</u> :	Ascon	Ascon non-volatile	
	Area (μm^2):	4970.75	5235.95 (×1.05)	
	Area (<i>GE</i>):	10153	10694 (×1.05)	
	Timing :	Ascon	Ascon non-volatile	
Area and timing reports	Path Slack (ns):	1.52	1.62 (×1.07)	

Power estimation

- Post synthesis simulation with SDF back-annotation
- VCD file produced by simulation tool
- Power consumption of non-volatile parts must be reported as leakage power in Liberty file

Power estimation

Case 1: Sudden power failure

Case 2: Sleep mode

Power for one encryption / one standby

- Context
- What is MRAM ?
- Targeted CMOS technology
- LightWeight Cryptography (LWC): Ascon

- What does hybridization mean ?
- Case 1: Sudden power failure
- Case 2: Sleep mode

- What we can expect to hybridize ?
- Flow overview
- Non-volatile flip flop (NVFF)
- Electrical simulation
- Layout description
- Libertv file
- Logical model
- Svnthesis
- Power estimation

4 Futur works and conclusion

Conclusion

- Hardware implementation of Ascon with non-volatile flip flop
- Set up a design flow for hybridization

Futur works

- Placement routing and parasitic extraction steps
- Study the impact of non-volatile circuit for security aspects (side-channel and fault-based attacks)

Introduction

- Context
- What is MRAM ?
- Targeted CMOS technology
- LightWeight Cryptography (LWC): Ascon

2 Benefits of hybridization

- What does hybridization mean ?
- Case 1: Sudden power failure
- Case 2: Sleep mode

Non-volatile implementation of Ascon

- What we can expect to hybridize ?
- Flow overview
- Non-volatile flip flop (NVFF)
- Electrical simulation
- Layout description
- Liberty file
- Logical model
- Synthesis
- Power estimation

Futur works and conclusion

5 References

References I

- [1] Kostas Mathioudakis et al. "Short Paper: IoT: Challenges, Projects, Architectures". In: 2015 18th International Conference on Intelligence in Next Generation Networks. IEEE, 2015.
- [2] ANR. Sécurisation d'algorithmes cryptographiques par hybridation MRAM/CMOS - Projet MISTRAL. Feb. 2020. URL: https://anr.fr/Projet-ANR-19-CE39-0010.
- [3] STMicroelectronics. 28nm FD-SOI Technology Catalog.
- [4] NIST LWC. URL:

https://csrc.nist.gov/projects/lightweight-cryptography.