
SPA on NTRU software
implementation

Rabas Tomas with Jiri Bucek and Robert Lorencz

Czech Technical University (CTU) in Prague, Faculty of
Information Technology (FIT), Department of Information
Security (DIS)

May 24, 2022



NTRU
Post-quantum candidate for NIST standard

Authors: Jeffrey Hoffsteinem, Jill Pipherovou a Josephem
H. Silvermanem (1996)

Polynomial ringR = Z[x]/(xN − 1)

An element f ∈ R can be written as f =
∑N−1

i=0 fixi

2 /28



Coprime integers p and q where p << q
(p is 3, q is 2048 or 4096)

fq is polynom f with reduced coefficients modulo q

Key Generation
f and g are random ternary polynomials with fixed
number of coefficients 1 and−1
h = pf−1

q g mod q
f is the priv. key, h is the pub. key

3 /28



Encryption
Input: random r , message m , public key h
e = rh + m mod q

Decryption
Input: ciphertext e , private key f
a = fe mod q
m = af−1

p mod p

Remark: f is chosen so that f−1
p equals 1

4 /28



Correctness
a = e · f mod q

e=rh+m
= r · h · f + m · f mod q

h=pf−1
q g

= r · pf−1
q g · f + m · f mod q

= pr · g + m · f mod q

a · f−1
p = (pr · g + m · f) · f−1

p mod p
= 0 + m · f · f−1

p mod p
= m mod p

5 /28



Power Analysis
Wewant to find the secret key f ...

... by observing power consumption of the device

We look at the decryption algorithm (where private key is
used)

Essentially, it is just a polynomial multiplication modulo
q.

6 /28



Implementation
Suggested in: An, Soojung, Suhri Kim, Sunghyun Jin,
Hanbit Kim and Hee-Seok Kim. “Single Trace Side
Channel Analysis on NTRU Implementation.” Applied
Sciences 8 (2018): 2014

Implementation was proposed as a countermeasure
against power analysis
(dispose of leakage based on different instructions)

Our code based on StrangSwan implementation
(https://www.strongswan.org/)

7 /28



The private key is sparse (values 1,-1 or 0)

The implementation use sparse encoding b of the private
key (saves the space)

Stores increasing coefficients of 1 and -1

Assume f = 1− x1 + x2 + x3 − x4 + x7 − x8, then we encode
it as b = [0, 2, 3, 7, 1, 4, 8].

8 /28



Require: cipher-text polynomial e ∈ R and encoding b of
private key F
Ensure: H = Fe (mod q)
1. for i = 0; i < N; i++
2. ti ← r , r is a random value
3. end for
4. for j = df + 1; j < 2df + 1; j++ do
5. k← bj
6. y← N− k
7. for i = 0; i < N; i++, y++ do
8. ti ← ti + ey
9. end for
10. end for
11. for i = 0; i < N; i++ do
12. ti ← −ti
13. end for
14. for j = 0; j < dF + 1; j++ do
... 9 /28



Visualization

10 /28



Where is the leakage

11 /28



12 /28



Target

8-bit microcontroller of the Microchip AVR family, namely
ATmega32A

50Ω series resistor using a standard passive oscilloscope
probe

Keysight DSOX3024T oscilloscope connected to the
controlling PC via USB

13 /28



14 /28



15 /28



Experimental results

16 /28



How to get rid of noise...

We use more traces and compute mean from them

We choose convenient ciphertext as 0 following with
high hamming weight values (255)

Then we get nice results :)

17 /28



10 traces average

18 /28



4 traces average

19 /28



2 traces average

20 /28



1 trace

21 /28



Conclusion

We discovered leakage depending on input data in the
protected implementation

Successfully verified by experiment for chosen
ciphertext on AVR 8-bit microcontroller as the target

22 /28



Future work?

Use 32-bit microcontroller

Use real value parameters (not smaller)

Combine with classical cryptoanalysis to achieve good
results even for random ciphertext and just one trace

23 /28



Thanks for attention

This work was supported by the OP VVV MEYS funded
project CZ.02.1.01/0.0/0.0/16 019/0000765 ”Research
Center for Informatics”

24 /28



25 /28



Appendix

26 /28



Bugs in original implementation:

Parity of N

Subtraction of r in the end

Indeces out of range
-> double array e

27 /28



28 /28


