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NTRU
Post-quantum candidate for NIST standard

Authors: Jeffrey Hoffsteinem, Jill Pipherovou a Josephem
H. Silvermanem (1996)

Polynomial ringR = Z[x]/(xN − 1)

An element f ∈ R can be written as f =
∑N−1

i=0 fixi
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Coprime integers p and q where p << q
(p is 3, q is 2048 or 4096)

fq is polynom f with reduced coefficients modulo q

Key Generation
f and g are random ternary polynomials with fixed
number of coefficients 1 and−1
h = pf−1

q g mod q
f is the priv. key, h is the pub. key
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Encryption
Input: random r , message m , public key h
e = rh + m mod q

Decryption
Input: ciphertext e , private key f
a = fe mod q
m = af−1

p mod p

Remark: f is chosen so that f−1
p equals 1
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Correctness
a = e · f mod q

e=rh+m
= r · h · f + m · f mod q

h=pf−1
q g

= r · pf−1
q g · f + m · f mod q

= pr · g + m · f mod q

a · f−1
p = (pr · g + m · f) · f−1

p mod p
= 0 + m · f · f−1

p mod p
= m mod p
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Power Analysis
Wewant to find the secret key f ...

... by observing power consumption of the device

We look at the decryption algorithm (where private key is
used)

Essentially, it is just a polynomial multiplication modulo
q.
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Implementation
Suggested in: An, Soojung, Suhri Kim, Sunghyun Jin,
Hanbit Kim and Hee-Seok Kim. “Single Trace Side
Channel Analysis on NTRU Implementation.” Applied
Sciences 8 (2018): 2014

Implementation was proposed as a countermeasure
against power analysis
(dispose of leakage based on different instructions)

Our code based on StrangSwan implementation
(https://www.strongswan.org/)
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The private key is sparse (values 1,-1 or 0)

The implementation use sparse encoding b of the private
key (saves the space)

Stores increasing coefficients of 1 and -1

Assume f = 1− x1 + x2 + x3 − x4 + x7 − x8, then we encode
it as b = [0, 2, 3, 7, 1, 4, 8].
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Require: cipher-text polynomial e ∈ R and encoding b of
private key F
Ensure: H = Fe (mod q)
1. for i = 0; i < N; i++
2. ti ← r , r is a random value
3. end for
4. for j = df + 1; j < 2df + 1; j++ do
5. k← bj
6. y← N− k
7. for i = 0; i < N; i++, y++ do
8. ti ← ti + ey
9. end for
10. end for
11. for i = 0; i < N; i++ do
12. ti ← −ti
13. end for
14. for j = 0; j < dF + 1; j++ do
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Visualization

10 /28



Where is the leakage
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Target

8-bit microcontroller of the Microchip AVR family, namely
ATmega32A

50Ω series resistor using a standard passive oscilloscope
probe

Keysight DSOX3024T oscilloscope connected to the
controlling PC via USB
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Experimental results
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How to get rid of noise...

We use more traces and compute mean from them

We choose convenient ciphertext as 0 following with
high hamming weight values (255)

Then we get nice results :)
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10 traces average
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4 traces average
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2 traces average

20 /28



1 trace
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Conclusion

We discovered leakage depending on input data in the
protected implementation

Successfully verified by experiment for chosen
ciphertext on AVR 8-bit microcontroller as the target
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Future work?

Use 32-bit microcontroller

Use real value parameters (not smaller)

Combine with classical cryptoanalysis to achieve good
results even for random ciphertext and just one trace
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This work was supported by the OP VVV MEYS funded
project CZ.02.1.01/0.0/0.0/16 019/0000765 ”Research
Center for Informatics”
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Appendix
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Bugs in original implementation:

Parity of N

Subtraction of r in the end

Indeces out of range
-> double array e
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