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The attacker measures
the device's power
consumption during the
encryption
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Side-Channel Attacks (SCA) [KJJ99] I

#include "sca.h"

‘ Euréka !
int main()

{

run_power_analysis();

}

"~

From the acquired data, The analysis rank all If the analysis is

the attacker performs possible key hypothesis, successful, the attacker
several side-channel in order to find the secret  has therefore access to
analysis. key. the encrypted data.



d-Order Boolean Masking [GP99] I

A secret Boolean variable x is split into d + 1 shares x;:

X =x90D x1 D D xy.

The side-channel behavior depends on the random
shares of x, not on x itself.




Objectives

1 Replace registers with asynchronous latches in order to obtain self-timed masking schemes.
A 4

2 Evaluate the performance of secure masked schemes operating as self-timed circuits.
A 4

3 Evaluate the importance of fresh randomness in self-timed masked implementations.
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Self-Timed Masking




Self-Timed Latches [MB59] I

req-i
Built upon Muller c-elements [MB59]. ack-o
D[0].f —
E Qlo] .t
D[0].t —
}) Q1].f
D[1].f —
3@ Ql1].t
D[1].t
Figure: A Muller c-element’s symbol and its truth table. Figure: The self-timed latch.
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Dual-Rall Protocol with Pre-Charge / Evaluate Logic I

Encodes a bit using two signals [DN95].

ﬁg
Null (@) 3@ . Qrol.f
D[O].f —

1 1 3@ Q0] .t
D[O] .t

Not Used 1 1

R ———




The Danger of Glitches

the secret y

A glitchy function may leak the secret variable [MPGO5, I\/IPOOS]./ ‘ f, depends on
.'.

fo(X0, Y0, Y1) = X0Yo D X0y, — § - xXoD y

Let us suppose a signal b is faster than a:

Input Transition Dual-Rail Function

a; — Ag bl_)bF Z = ClANDb Z = aXORb

1-0 0-1 0 ‘itﬁ?—) 0 1 >1 0
z.t (M

1-0 1-0 1-0 0 -0
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Dual-Rail Functions

0 0
0

Avoiding Glitches [Juk21] I

N

Pre-Charge / Evaluate Logic

+ ‘

Dual-Rail Monotonic Functions

S 8 ©

Input Transition Dual-Rail Function

Lys
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a; — Aar bI_>bF Z = aANDb Z = aXORb

1 0 0 1
Pre-Charge = = = =

1-0 1-0 1-0 0-0

-1 -1 -0 -0
Evaluate

-1 -0 -0 -1



Single-Cycle Processing

ack_o ¢ reqi=1

gﬁﬁﬁ*ﬁ*

Figure: The self-timed PRESENT S-box.

| S-box Inputs

+ clk | ack token req_1

e @ IDLE 1
start —
PROCESS * 0

ack COMPRESS 1) 1
17 1
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Self-Timed Gadgets

Replacing Registers with Self-Timed Latches

" 2

8.0 — *

D e Do
i o>

be D7> DFF .
DFF Dﬁ 21 é.kl DR |} Lqq . £1

Figure: Original DOM Gadget [GMK16]. Figure: Self-Timed DOM Gadget.
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Randomness vs Self-Timed Masking

Data dependent evaluation time may be a threat to self-timed circuits.

Does the self-timed feature guarantee first-order masking security?

S-boxes without random refresh bits | S-boxes with random refresh bits

QPRESENT [SM21] QTI PRESENT
QAES [SM21] QDOM AES [GMK16]

‘YI 13
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Implementation Results




Implementation Results | PRESENT and AES S-boxes

Design Shares PUEELE Refresh Latency Standard Cell
J KGE] [bits] [cycles] Library
0

PRESENT [PMK+11] 3 0.36 1 UCM 180-nm
PRESENT [this work] 2 0.99 1 STM 40-nm
PRESENT [this work] 2 1.02 8 1 STM 40-nm
AES [UHA17] 2 1.40 64 5 TMSC 65-nm
AES [WM18] 4 4.20 0 16 UCM 180-nm
AES [Sugl19] 3 3.50 0 4 NanGate 45-nm
AES [GMK16] 2 2.80 28 5 UCM 180-nm
AES [GMK16] 2 2.60 18 8 UCM 180-nm
AES [this work] 2 7.79 0 1 STM 40-nm
AES [this work] 2 6.07 18 1 STM 40-nm

0y
(D
o
O

n-a-2-trput NAND gate.
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Simulating Side-Channel Behavior

v’ Test Vector Leakage Assessment (TVLA) [GJIR11]
v 2 million fixed vs random simulated traces

v Noiseless analysis

v 1 ps time span

netlist

/
S traces
[j Logic
s —— ()| —| Parser |— ()<

v
WU Ay

vectors Simulator

- N

Figure: Modeling the power consumption based on the system’s toggling activity.
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TVLA: PRESENT S-boxes

Without Fresh Randomness[ FAIL ] With Fresh Randomness [ PASS ]
20 | 20 |
S &
; — Z 10| :
= T b ..
+5 — - 0 W—“—W\"N—A\A\M‘“‘W/\"
— —
O N o T
o) o)
— —
f’ —10 QO —10
— —
—20 ' —20 '
0 0.5 1 104 0 0.5 1 104
Samples Samples

Figure: Based on two million simulated traces.
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TVLA: AES S-boxes

Without Fresh Randomness[ FAIL ] With Fresh Randomness [ PASS ]
20 20 |

5 3

Z 10| : Z 10| :

: S S

P 0

F <0 Pty ol el

— —

> 5 J

o) ~

— —

f’ —10 QO —10

— —

—20 —20 | |
1 2 .10° 0 0.5 1 1.5 2 .10°
Samples Samples

Figure: Based on two million simulated traces.
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Conclusion




Conclusion

Use of self-timed latches to obtain single-cycle hardware masked S-boxes.
Implementation of glitch-free circuits using monotonic logic.

How to avoid the early propagation effect in dual-rail gadgets.
Locally-asynchronous globally synchronous implementation.

Needs fresh randomness in order to be first order secure.
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Possible Future Work

1 Implement self-timed higher-order hardware masked S-boxes.
v

2 From the self-timed S-boxes, design their respective ciphers.
v

3 Obtain the performance figures from simulation and FPGA.
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Self-Timed Latches

req-1i req-1i

ack_o ack_o

BO= 0101 BG 0101.1
D[0].f — D[0].f —
BG 0t < (0 ato
D[O].t — D[0].t —
) 0te) o) 0te)
D[1].f — D[1].f —
3@ Q1.+ 3@ Qril ¢
D[1].t D[1].t

‘Y_’ Figure: Strongly indicating (left) and weakly indicating (right) latches.
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Muller c-Element [MB59] I

I

I

}
-
}

Figure: The Muller c-element symbol and truth table. Figure: gate-level implantation.
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The Danger of Glitches

A glitchy function may leak the secret variable [MPG05, MPOOQ5].

fo (X0, Y0, V1) = X0Yo D Xoy1 — § - xoD y

Input Transition Dual-Rail Function

a; = ag b; - bp z =aANDb z = aXORD
0-1 0-1 0-1 0->1->0A
0-1 1-0 0 1-0->1A
1-0 0-1 “ 0-1-0AN 1-50-1A
1-0 1-0 1-0 0->1->0/AN
0-1 0-1 1-0 1-0->1A
0-1 1-0 2 f 1 051-50A
1-0 0-1 1-0-1A 0-1-0A

‘—” 1-0 1-0 0-1 1-50->1A N
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Avoiding Glitches

Pre-Charge Evaluate Logic + Monotonic Functions [PBM+20]

Input Transition Dual-Rail Function

a; = ag b; = bp z =aANDb z = aXORDb

0-0 0-0 0-0 0-0

0-0 1-0 0-0 1-0
Pre-charge

1-0 0-0 0-0Q 1-0

1-0 1-0 1-0 0-0Q

D-1 0-1 -0 ®-0

D-1 -0 ?-0 D-1
Evaluate

®-0 D-1 ®—-0 D-1

®-0 ®—-0 D-1 ?-0
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Self-Timed Masking

req.i =1 E

0 = ack_o <«

. -

ack.s =1
0 = ack_o
%) * :> %)
(A) (B)

ack.s =1 reqi=0
* :> @V —> O
(A) (B)

ack_s =0 reqi=1
%) :> * | = &
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Self-Timed Masking

(.
Lreq_l = 1] ~N e .

q_1 paces
—> X the data flow In

the pipeline

S

ack o
Indicates the

first latch state
{req_i = 0] ~
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