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Photon-Beetle – Context

■ 2018 NIST Lightweight Cipher Finalist

■ Authenticated encryption and hash family

– Sponge-based mode Beetle

– PHOTON Hash permutation

■ Hardware implementation

■ Robustness against Side-Channel Attacks
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Authenticated ciphers with Associated Data
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Sponge Construction
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PHOTON-Beetle-AEAD
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PHOTON-Beetle-AEAD + Hash
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■ Parameters

– NONCE : 128 bits

– KEY : 128 bits

– State : 256 bits

– Rate
■ AEAD : 32 bits, 128 bits

■ Hash : 32 bits

– Capacity : State – Rate

– Tag : 128 bits

– Hash : 256 bits

■ Rate of 32 bits selected to create a unified architecture



PHOTON-256

7



Round Functions (1)
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Round Functions (2)
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Hardware Implementation
Serialization of ଶହ Proposed Architecture 
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Packing the core as an IP
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Experimental evaluation
■ Set of test vectors provided to NIST

Implementation results
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Side-Channel Attack (1)
■ Test the robustness against Side-Channel Attack

■ Step 1: acquire power consumption traces

– Nonce variation

– CW305 with amplified power consumption output

13



Side-Channel Attack (2)

First PhotonBeetle call Power consumption of the FPGA
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Side-Channel-Attack (3)
■ Step 2: Power Analysis

– Classical DPA on block cipher
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Side-Channel-Attack (4)
■ PhotonBeetle

■ Each nibble of the nonce relies on 4 nibbles of the key
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Conclusion and Future work
■ Hardware Implementation

– Serialization of the ଶହ

– Core packed as an IP

■ Side-channel attacks

– Power analysis on the traces to recover the key

– Robustness evaluation against SCA

■ Protection against SCA

– Protected implementation
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THANK YOU
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■ Weak points

– Too slow
■ Processing each input block using a hash leads to high processing latency

– Underlying permutation is only 128 bits
■ 112 bit s of security against pre-image and colliion attacks according to the original 

photon assesment

– Absorbtion od the key and the nonce
■ Clear point where the Power analysis can focus

– Squeezing of the tag 
■ Symply empties half of the state

■ Fix this points would lead to greater delays, inviable for lightweight algorithms
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