
LOW-AREA 
IMPLEMENTATION

OF PHOTON-BEETLE
Cryptarchi 2022

Pierre-Antoine TISSOT, Carlos-Andres LARA-NINO
Laboratoire Hubert Curien UMR5516, F-42023 St-Etienne, France

1



Photon-Beetle – Context

■ 2018 NIST Lightweight Cipher Finalist

■ Authenticated encryption and hash family

– Sponge-based mode Beetle

– PHOTON Hash permutation

■ Hardware implementation

■ Robustness against Side-Channel Attacks

2



Authenticated ciphers with Associated Data

3



Sponge Construction

4



PHOTON-Beetle-AEAD

5



PHOTON-Beetle-AEAD + Hash

6

■ Parameters

– NONCE : 128 bits

– KEY : 128 bits

– State : 256 bits

– Rate
■ AEAD : 32 bits, 128 bits

■ Hash : 32 bits

– Capacity : State – Rate

– Tag : 128 bits

– Hash : 256 bits

■ Rate of 32 bits selected to create a unified architecture



PHOTON-256

7



Round Functions (1)

8



Round Functions (2)

9



Hardware Implementation
Serialization of ଶହ Proposed Architecture 

10



Packing the core as an IP

11



Experimental evaluation
■ Set of test vectors provided to NIST

Implementation results

12



Side-Channel Attack (1)
■ Test the robustness against Side-Channel Attack

■ Step 1: acquire power consumption traces

– Nonce variation

– CW305 with amplified power consumption output

13



Side-Channel Attack (2)

First PhotonBeetle call Power consumption of the FPGA

14



Side-Channel-Attack (3)
■ Step 2: Power Analysis

– Classical DPA on block cipher

15

𝑺

𝑘

𝑝
𝑝 ⊕ 𝑘

𝑺[𝑝⊕ 𝑘]



Side-Channel-Attack (4)
■ PhotonBeetle

■ Each nibble of the nonce relies on 4 nibbles of the key

16

NONCE

KEY

NONCE

KEY

AddConstant
SubCells

ShiftRows Linear
NONCE + KEY

MixColumns Non-linear
NONCE + KEY

AddConstant
SubCells



Conclusion and Future work
■ Hardware Implementation

– Serialization of the ଶହ

– Core packed as an IP

■ Side-channel attacks

– Power analysis on the traces to recover the key

– Robustness evaluation against SCA

■ Protection against SCA

– Protected implementation

17



THANK YOU

18



■ Weak points

– Too slow
■ Processing each input block using a hash leads to high processing latency

– Underlying permutation is only 128 bits
■ 112 bit s of security against pre-image and colliion attacks according to the original 

photon assesment

– Absorbtion od the key and the nonce
■ Clear point where the Power analysis can focus

– Squeezing of the tag 
■ Symply empties half of the state

■ Fix this points would lead to greater delays, inviable for lightweight algorithms

19


