

# LOW-AREA IMPLEMENTATION OF PHOTON-BEETLE

Cryptarchi 2022 <u>Pierre-Antoine TISSOT</u>, Carlos-Andres LARA-NINO Laboratoire Hubert Curien UMR5516, F-42023 St-Etienne, France



### Photon-Beetle – Context

- 2018 NIST Lightweight Cipher Finalist
- Authenticated encryption and hash family
  - Sponge-based mode Beetle
  - PHOTON Hash permutation
- Hardware implementation
- Robustness against Side-Channel Attacks



#### Authenticated ciphers with Associated Data



The information can be secret, transmitted, or public.



## **Sponge Construction**





### **PHOTON-Beetle-AEAD**







# PHOTON-Beetle-AEAD + Hash

- Parameters
  - NONCE : 128 bits
  - KEY : 128 bits
  - State : 256 bits
  - Rate
    - AEAD : 32 bits, 128 bits
    - Hash: 32 bits
  - Capacity : State Rate
  - Tag : 128 bits
  - Hash : 256 bits
- Rate of 32 bits selected to create a unified architecture





## PHOTON-256







# $P_{256}$ Round Functions (1)



| r  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|----|---|---|---|---|---|---|---|---|---|---|----|----|
| rc | 1 | 3 | 7 | е | d | b | 6 | С | 9 | 2 | 5  | а  |

### Substitution Box



ShiftRows





# $P_{256}$ Round Functions (2)

#### **MixColumnSerial**

08

23

35

3F

17 10 11

18 19 1A

21

3C 3D

2B 2C

34

1F

32 33







# Hardware Implementation



10



### Packing the core as an IP





# **Experimental evaluation**

#### Set of test vectors provided to NIST

| Anab          | Distign   | FF  | TIT | SLC | LAT       | MHz |  |
|---------------|-----------|-----|-----|-----|-----------|-----|--|
| Arcn.         | Plationii |     | LUI | CLB | LAT/block |     |  |
|               | ZVBO      | 260 | 323 | 96  | 124       | 200 |  |
| Der           | LIDO      | 262 | 363 | 105 | 124       | 250 |  |
| F 256         | TEASAO    | 259 | 313 | 63  | 124       | 333 |  |
|               | 1E0002    | 274 | 462 | 77  | 124       | 740 |  |
| PHOTON-Beetle | ZYBO      | 348 | 711 | 204 | 120       | 200 |  |
|               | TEASAO    | 348 | 633 | 108 | 120       | 333 |  |
|               | 1E0602    | 348 | 687 | 113 | 120       | 600 |  |

Implementation results

# Side-Channel Attack (1)

- Test the robustness against Side-Channel Attack
- Step 1: acquire power consumption traces
  - Nonce variation
  - CW305 with amplified power consumption output









# Side-Channel Attack (2)

First PhotonBeetle call

Power consumption of the FPGA





# Side-Channel-Attack (3)

Step 2: Power Analysis

 $\bullet k = 0$ 

• k = 1

 $6 \bullet k = 2$ 

 $\begin{array}{c} 4 \\ y \oplus d \end{array}$ 

2

0

0

- Classical DPA on block cipher

2

4

plaintext p

6



2

4

plaintext p

6

2

0

0

k

15



# Side-Channel-Attack (4)

#### PhotonBeetle



Each nibble of the nonce relies on 4 nibbles of the key

| L |  |  |  |  |
|---|--|--|--|--|
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
| Γ |  |  |  |  |
|   |  |  |  |  |



# **Conclusion and Future work**

- Hardware Implementation
  - Serialization of the  $P_{256}$
  - Core packed as an IP
- Side-channel attacks
  - Power analysis on the traces to recover the key
  - Robustness evaluation against SCA
- Protection against SCA
  - Protected implementation



# THANK YOU



#### Weak points

- Too slow
  - Processing each input block using a hash leads to high processing latency
- Underlying permutation is only 128 bits
  - 112 bit s of security against pre-image and colliion attacks according to the original photon assessment
- Absorbtion od the key and the nonce
  - Clear point where the Power analysis can focus
- Squeezing of the tag
  - Symply empties half of the state
- Fix this points would lead to greater delays, inviable for lightweight algorithms