
Some problems on Boolean functions
posed by side channel attacks

Claude Carlet
(1) LAGA, Universities of Paris 8 and Paris 13, CNRS, France

(2) University of Bergen, Norway

Outline

I Side Channel Attacks and the counter-measure of masking

I Minimizing the number of nonlinear multiplications for optimizing

the masking counter-measure against side channel attacks

I Correlation immune Boolean functions for drastically reducing the

cost of counter-measures against side channel attacks

1

Side Channel Attacks and their counter-measures

The implementation of cryptographic algorithms in devices like

smart cards (mainly in software), FPGA or ASIC (in hardware) leaks

information on the data manipulated by the algorithm, leading to

side channel attacks (SCA).

The attacker model is then not a black box but a grey box.

This information can be traces of electromagnetic emanations or

photonic emission, power consumption measurements...

2

3

SCA are very powerful on block ciphers if countermeasures are not

included in their implementation, since SCA can use information on

the data manipulated during the first round (weak diffusion).

The best classical attack on AES (most used symmetric cipher in

the world) needs thousands of centuries. The original implementation

of AES can be attacked by SCA in a few seconds with a few traces.

A sensitive variable is chosen in the algorithm, whose value is

stored in a register and depends on the plaintext and a few key bits.

The register leaks.

The leak discloses a noisy version of a real-valued function L of

the sensitive variable.

4

For instance, in the so-called Hamming weight leakage model,

L(Z) equals the Hamming weight of Z.

A statistical method finds then the value of the key bits which

optimizes the correlation between the traces and a modeled leakage.

Counter-measures fortunately exist.

Most common and general : mask each sensitive variable by

splitting it : (Z ⊕M,M).

5

Z ⊕ M M

! Joint leakage L

! !

If the leakage is the Hamming weight wH, then instead of wH(Z),

the attacker will have traces of wH(Z ⊕M) + wH(M).

And the mean of wH(Z ⊕M) + wH(M), when M is uniformly

distributed, is independent of Z, since
∑
x∈Fn2

(wH(z+x)+wH(x)) =

2
∑
x∈Fn2

wH(x). But this has a cost :

6

- In software (smart cards), this increases the execution time.

An AES runs in less than 4000 cycles without masking and with

masking it needs 100 000 cycles.

The program executable file size is also increased because all the

computations need to be modified into computations on shares.

- In hardware (ASIC, FPGA), the implementation area is roughly

tripled (expensive !).

7

Higher order attacks : The counter-measure of masking with a

single mask (i.e. two shares) cannot resist Higher order SCA :

- The attacker starts with a first order attack, exploiting the

leakage L(Z). This is successful if E(L|Z = z) depends on z.

- if E(L|Z = z) does not depend on z, then the attacker can try

a second order attack, on L2 (or on the product of two leakages,

which is more difficult in hardware but possible in software). Etc.

This forces to apply higher order masking :

d+ 1 shares : M1, . . . ,Md are chosen at random and

Md+1 = Z ⊕M1, · · · ⊕Md.

8

The complexity of d-th order SCA (time and number of traces) is

exponential in the order : O(V d), where V is the variance of the

noise (since taking Ld raises the noise at the d-th power).

The cost of masking (running time and memory) is quadratic in d.

Hence, theoretically, the designer can take advantage over the

attacker but practically there is a need of reducing the cost.

9

Minimizing the number of nonlinear multiplications

We need, for ensuring the security of the whole algorithm, to

change every function x 7→ F (x) in the algorithm into a function

(m0, . . . ,md) 7→ (m′0, . . . ,m
′
d) (called a masked version of F) such

that, if m0, . . . ,md are shares of x then m′0, . . . ,m
′
d are shares of

F (x).

If F is linear (like diffusion layers - MixColumns and ShiftRows

in AES), then we can take m′i = F (mi) for designing its masked

version.

The case of an affine function is similar.

10

If F is not affine (e.g. a substitution layer - SubBytes in AES),

we can consider it over the field F2n (always possible since F2n is

a vector space over F2) and it is then representable by a univariate

polynomial function, whose computation can be decomposed into a

sequence of additions and multiplications in the field.

The operations of addition, scalar multiplication and squaring are

linear.

For masking multiplication, there is a method called the ISW

algorithm (Ishai-Sahai-Wagner).

11

The time complexity and the amount of random data which needs

to be generated for the ISW algorithm are both quadratic in d.

We need to minimize the number of nonlinear multiplications.

- When the S-box is a power function F (x) = xd like in the

AES, minimizing the number of nonlinear multiplications results in

a variant of the classical problem of minimizing addition chains in a

group.

For instance, the inverse function x → x254 = x−1 in F28 can be

implemented with 4 nonlinear multiplications, in many ways (not

with the square-and-multiply algorithm, though).

12

- When the S-box is a general polynomial, minimizing the number

of nonlinear multiplications is a new paradigm. It is proved by Coron

et al. that, for every positive integer n, there exists a polynomial

P (x) ∈ F2n[x] with masking complexity MC(P) ≥
√

2n

n − 2.

There exist several methods for trying to minimize the multiplicative

complexity :

— The cyclotomic method consists in rewriting P (x) in the form :

P (x) = u0 +

q∑
i=1

Li(x
αi) + u2n−1x

2n−1 ,

where (Li)i6q is a family of linear functions.

13

Upper bound on the masking complexity :
∑

δ|(2n−1)

ϕ(δ)

µ(δ)
− 1,

where µ(m) denotes the multiplicative order of 2 modulo m

and ϕ the Euler’s totient function.

— The Knuth-Eve method is based on a recursive use of the

decomposition :

P (x) = P1(x
2)⊕ P2(x

2)x

where P1(x) and P2(x) have degrees bounded above by

bdeg(P)/2c.
14

Upper bound on the masking complexity :{
3 · 2(n/2)−1 − 2 if n is even,

2(n+1)/2 − 2 if n is odd.

— The Coron-Roy-Vivek (CRV) method (heuristic but more ef-

ficient) starts with a union C of cyclotomic classes Ci in

Z/(2n − 1)Z, such that all power functions xj, j ∈ C, can

be processed with a global small enough number of nonlinear

multiplications.

15

This set of monomials xj spans a subspace P of F2n[x].

A polynomial R ∈ F2n[x1, · · · , xt] is searched such that :

P (x) = R (P1(x), · · · , Pt(x)), where the Pi’s are taken in P.

The search tries to minimize MC(R) + µ, where µ is the

number of non-linear multiplications required to build C.

A heuristic approach (in order to speed up the process) is :

1. Building C such that all the powers in Pi are in C + C,

2. Fixing P1(x), ..., Pr(x) in P and searching for Pr+1(x),

..., P2r+1(x) in P such that :

P (x) =

r∑
i=1

Pi(x)× Pr+i(x) + P2r+1(x) .

16

This results in solving a linear system of n2n Boolean

equations.

The complexity is O(
√

2n/n) (asymptotically optimal).

— The CPRR method is based on another algebraic decomposition

heuristic principle. It decomposes P (x) by means of functions

of low algebraic degree :

P (x) =

t∑
i=1

Pi
(
Qi(x)

)
+

r∑
i=1

Li
(
Gi(x)

)
+ L0(x) ,

where the Pi’s have algebraic degree at most s and the Qi’s

and Gi’s are compositions of polynomials of algebraic degree

at most s (the Li’s being linear).

17

Recall : The algebraic degree of a vectorial function F (x) ;

x ∈ Fn2 , is the global degree of its ANF :

F (x) =
∑

I⊆{1,...,n}

aI
∏
i∈I

xi; aI ∈ Fn2 ,

and when Fn2 is endowed with the structure of the field F2n,

and

F (x) =

2n−1∑
j=0

aj x
j; aj, x ∈ F2n,

the algebraic degree of F equals the maximal number of 1’s

needed for writing j in base 2 when aj 6= 0.

18

The decomposition step starts by deriving a family of gene-

rators :

{
G1(x) = F1(x)

Gi(x) = Fi
(
Gi−1(x)

) where the Fi are random

polynomials of algebraic degree s.

Then it randomly generates t polynomials Qi =
∑r
j=1Lj ◦Gj,

where the Lj are linearized polynomials.

Eventually, it searches for t polynomials Pi of algebraic degree

s and for r + 1 linearized polynomials Li such that :

P (x) =

t∑
i=1

Pi
(
Qi(x)

)
+

r∑
i=1

Li
(
Gi(x)

)
+ L0(x) .

This is solving a system of linear equations over F2n.

19

For masking a function F of algebraic degree at most s, the

method uses that, for every function from F2n to itself of

algebraic degree at most s, the mapping

ϕ
(s)
F (a1, a2, . . . , as) =

∑
I⊆{1,...,s}

F
(∑
i∈I

ai

)
is multilinear, which allows proving that, for every d ≥ s :

F
(d∑
i=1

ai

)
=

s∑
j=0

µd,s(j)
∑

I⊆{1,...,d}
|I|=j

F
(∑
i∈I

ai

)
,

where µd,s(j) =
(
d−j−1
s−j

)
mod 2 for every j ≤ s.

20

This reduces the complexity of the d-masking of a degree s function

to several s-maskings

→ Better complexity when the field multiplication is a costly opera-

tion (exceeds 5 elementary operations).

Remark.

1. This property has been recently used to generate a universal

Threshold implementation of S-boxes, which minimizes the number

of shares (Piccione, Budaghyan, C.C., Nikova, Rijmen et al.).

2. Some block ciphers have been designed with S-boxes minimizing

the masking complexity, such as PICARO (Piret-C.C.-Roche).

21

Correlation immune Boolean functions for
counter-measures against side channel attacks

I Leakage squeezing

A masking method in hardware that is similar to coding in digital

communications, but where the goal instead of allowing correction of

errors, is to make it hard for the attacker to decode the signal.

First order :

22

n bits

Z ⊕ M F (M)
a b

n bits

C R

F

a′ b′

simultaneous
leakage L

F−1

Combinational
glitch-free logic
(e.g. memory)

Initial values of
the registers

Final values of
the registers

Z

Z ′

M

M ′

n bits

n bits

Z ′ ⊕ M ′ F (M ′)

(a
lg
or
it
hm

it
er
at
io
n
s)

23

Second order :

simultaneous
leakage L

Final values of
the registers

n bits

R2

F2

F2(M2)

n bits

c

M1

R1

F1

F1(M1)

n bits

b

M ′
1

M2

M ′
2

F−1
1 F−1

2

b′ c′

F1(M
′
1) F2(M

′
2)

(a
lg
or
it
hm

it
er
at
io
n
s)

Combinational
glitch-free logic
(e.g. memory)

a′

Z ′ ⊕ M ′
1 ⊕ M ′

2

Z ⊕ M1 ⊕ M2

a

Initial values of
the registers

C

Z

Z ′

n bits

n bits

n bits

n bits

24

Attacks (on second-order leakage squeezing) :

Non-injective

function
leakage

and noisy

3) Test:

2) Compute L i

1) Measure L

Var[E[L i|Z]]
?

!= 0

Encoding

S0

F1(S1)

F2(S2)

Registers:

N (0, σ2)

(Side)-Channel Attack

[d
ev

ic
e

u
n
d
er

a
tt

a
ck

]

Defense: counter-measure

Masking =

Sharing

Shares:

S0

S1

S2

Information retrieval

wH

“decoding Z”+

Sensitive
variable:

Z

(exhaustive search)

L

Efficiency of leakage-squeezing for first-order :

25

Theorem The first-order leakage squeezing counter-measure with

a permutation F resists the attack of order d if and only if :

∀a, b ∈ Fn2 , 1 ≤ wH(a) + wH(b) ≤ d⇒
∑
x∈Fn2

(−1)b·F (x)+a·x = 0,

that is, the indicator (characteristic function) of the graph

GF = {(x, F (x), x ∈ Fn2}

of F is a d-th order correlation immune (d-CI) function.

Equivalently, the systematic code GF has dual distance at least d+1.

26

I Rotating S-boxes Masking (RSM, hardware)

To avoid the joint leakage :

Z ⊕ M M

! Joint leakage L

! !

which allows high-order SCA, the mask M is not processed at all.

27

Instead, the computation for the next S-box is done with a Look-

Up-Table (LUT) of the masked S-box S′(x) = S(x⊕M)⊕M ′.

Having a LUT for each masked version of each S-box is not

possible for reasons of memory.

A small number of S-boxes (e.g. w = 16 for AES) are then

embedded already masked in the implementation.

Theorem [C.C., S. Guilley] The countermeasure resists the d-th

order attack if and only if the indicator f of the mask set satisfies

∀a ∈ Fn2 , 1 ≤ wH(a) ≤ d⇒
∑
x∈Fn2

(−1)f(x)+a·x = 0.

28

Recall that such function is called d-CI (correlation immune).

Equivalently, the mask set is a code of dual distance at least d+1

(a parameter in coding theory).

We look for such functions of minimum nonzero Hamming weight.

ωn,d : minimum weight of d-th order CI functions.

2d divides ωn,d

∀ n ≥ d ≥ 1, ωn+1,d ≤ 2ωn,d ≤ ωn+1,d+1.

d even , n ≥ d ≥ 2;ωn+1,d+1 = 2ωn,d.

29

n
d

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2
2 2 4
3 2 4 8
4 2 8 8 16
5 2 8 16 16 32
6 2 8 16 32 32 64
7 2 8 16 64 64 64 128
8 2 12 16 64 128 128 128 256
9 2 12 24 128 128 256 256 256 512
10 2 12 24 128 256 512 512 512 512 1024
11 2 12 24 ? 256 512 1024 1024 1024 1024 2048
12 2 16 24 ? ? ? 1024 2048 2048 2048 2048 4096
13 2 16 32 ? ? ? ? 4096 4096 4096 4096 4096 8192

Minimal value ωn,d of wH(f), where f : Fn2 → F2 is d-CI.

Conjecture : the columns are non-decreasing.

30

CI functions are a particular case of orthogonal arrays (OA),

introduced by C.R. Rao in 1947 and used in the statistical design of

experiments : writing the elements of the support of f as the rows of

an N × n array A, every N × d subarray of A contains each d-tuple

exactly λ times as a row (d : strength of the OA).

In the case of a CI function, the OA is simple (there is no repetition

of a same row) and d is called the strength of the OA.

In the theory of orthogonal arrays, for both simple and general

orthogonal arrays, the main question is to determine the minimum

value of N for each value of d.

31

This problem is known to be very hard, even for the smallest

strength d = 2 (such orthogonal arrays with n columns and n + 1

rows are equivalent to Hadamard matrices).

Remark : Whether n 7→ ωn,d is non-decreasing is obvious for

general OA since erasing columns keeps the strength unchanged.

New result

[C.C., Rebeka Kiss,Gábor P. Nagy. Simplicity conditions for binary

orthogonal arrays, to appear in Designs, Codes and Cryptography]

32

Let A be an OA(N,n, s, 2u). Define the integer :

M(n, s, 2u) =

u∑
j=0

(
n

j

)
(s− 1)j.

1. If N < 2M(n, s, 2u), then A is simple.

2. If n ≥ 5, s = 2, u = 2 and N = 2M(n, 2, 4) = n2 + n + 2,

then either A is simple, or n = 5 and A is obtained by the

juxtaposition of two identical arrays OA(16, 5, 2, 4).

Consequences :

33

n
d

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2
2 2 4
3 2 4 8
4 2 8 8 16
5 2 8 16 16 32
6 2 8 16 32 32 64
7 2 8 16 64 64 64 128
8 2 12 16 64 128 128 128 256
9 2 12 24 128 128 256 256 256 512
10 2 12 24 128 256 512 512 512 512 1024
11 2 12 24 128 256 512 1024 1024 1024 1024 2048
12 2 16 24 128 256 768 1024 2048 2048 2048 2048 4096
13 2 16 32 128 256 1 024 1 536 4096 4096 4096 4096 4096 8192

↑ ↑ ↑ ↑
Non-decreasing Partly

34

Conclusion :

Boolean functions interfere centrally with counter-measures

against SCA, as well as codes (e.g. in code-based masking).

Their study is regularly necessary for solving problems about such

counter-measures.

Conversely, SCA provide interesting new questions on Boolean

functions, respectively, renew the interest of some classic questions.

35

