
On the Implementation Challenges of
Multi-Scalar-Multiplication for SNARKs

Raphaël Comps1, Viktor Fischer2, Carlos Lara2, Vladimír Marcin1, Tibor Tribus1
19th International Workshop on Cryptographic Architectures Embedded in Logic Devices
Castro Urdiales, Spain
June 13, 2023

1. MAYA-ZK, PRAHA, Česká republika
2. Université Jean Monnet Saint-Etienne, CNRS, Laboratoire Hubert Curien
UMR 5516, F-42023, SAINT-ETIENNE, France

Motivation

Zero Knowledge Protocols (ZKP)

• A method by which one party (the prover) can prove to another party (the verifier) that a given
statement is true.

• The prover does not convey any additional information apart from the fact that the statement
is indeed true.

• While it is trivial to prove that one possesses knowledge of certain information by simply
revealing it, the challenge is to prove such possession without revealing the information itself
or any additional information.

Carlos LARA 2

Applications

• Verify an individual’s identity, without revealing any sensitive personal information.

• Create voting mechanisms that enable individuals to cast votes without compromising their
identity or revealing who they voted for.

• Enable blockchain nodes to validate transactions without needing to access transaction data.

Carlos LARA 3

ZK in a nutshell

Visualizing Zero Knowledge

1 2

1Quisquater et al. (2001). How to explain zero-knowledge protocols to your children. In CRYPTO’89 (pp. 628-631). Springer New York.
2Illustration retrieved from www.bbva.com

Carlos LARA 4

www.bbva.com

ZK protocols

A broad ZKP classification

Based on their underlying operations :

• proof of knowledge

• witness indistinguishable proof

• multi-party computation

• ring signatures

• polynomial commitments

• Succinct Non-Interactive ARgument of Knowledge (SNARK)
• Scalable Transparent ARgument of Knowledge (STARK)

Carlos LARA 5

Commitment schemes

1. Commit

2. Reveal

Lock your secret

vote in a safe

Distribute your safe’s

key to the public

Distribute your safe

to the public

The public veri�es

your vote

Wait for all votes to be committed….

Count votes and declare winner!

https://karl.tech/Carlos LARA 6

https://karl.tech/

Polynomial commitments

Commitment schemes:

• binding : once publishing a commitment c,
the committer should not be able to find
some other message m′ ̸= m which also
corresponds to c

• hiding : publishing c should not reveal any
information about m

Polynomial commitments:

• incremental : the committer should be
able to “open” certain evaluations of the
committed polynomial without revealing
the entire thing

Carlos LARA 7

Background on polynomials

In general, it’s possible to take n arbitrary points and find a unique polynomial of degree n− 1
which passes through all of them. This process is called “polynomial interpolation.”

https://mathworld.wolfram.com/Carlos LARA 8

https://mathworld.wolfram.com/

Background on polynomials

A polynomial P(x) =
∑n1

i=0 pixi of degree (n− 1) can be represented in two ways:

• Coefficient form :
P(x) can be represented as a tuple of its n coefficients: [p0, p1, . . . , pn−1]

• Evaluation form :
P(x) can be represented as a tuple of n disctinct evaluations: [P(x0), P(x1), . . . , P(xn−1)]

Converting from coefficient form to evaluation form is analogous to solving a Fourier transform, and
converting in the reverse direction is analogous to solving an inverse Fourier transform.

Naively : from coefficient form, we can simply evaluate the polynomial at each xi in evaluation
domain. From evaluation form, we can use Lagrange interpolation to obtain the unique degree (n1)
polynomial passing through each of the n points.

Carlos LARA 9

SNARKs’ proof generation

Permutations over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge

• Phase 1 : Write out the “witness”
• The witness refers to some data that shows why a statement is true.

A B C S P Z
f0 f1 f2 1 f0 z(ω0)
f1 f2 f3 1 f1 z(ω1)
f2 f3 f4 1 k z(ω2)
.

fn−3 fn−2 fn−1 1 z(ωn−3)
fn−2 fn−1 fn 1 z(ωn−2)

0 z(ωn−1)

The trace table is a 2-dimensional matrix where the witness is written down. It also includes other
values that are useful in demonstrating that the witness is correct. Each cell is an element of a
large finite field.

Carlos LARA 10

SNARKs’ proof generation

Permutations over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge

• Phase 2 : Commit to the trace table
• Create some succinct representation of the witness, compressing it.
• Using polynomial commitments allows to prove certain properties about the original witness,
referencing just the succinct commitment.

A B C S P Z
f0 = a(α0) f1 = b(β0) f2 = c(γ0) 1 = s(σ0) f0 = p(ρ0) z(ω0)
f1 = a(α1) f2 = b(β1) f3 = c(γ1) 1 = s(σ1) f1 = p(ρ1) z(ω1)
f2 = a(α2) f3 = b(β2) f4 = b(γ2) 1 = s(σ2) k0 = p(ρ2) z(ω2)

.

fn−3 = a(αn−3) fn−2 = b(βn−3) fn−1 = c(γn−3) 1 = s(σn−3) kn−5 = p(ρn−3) z(ωn−3)
fn−2 = a(αn−2) fn−1 = b(βn−2) fn = c(γn−2) 1 = s(σn−2) kn−4 = p(ρn−2) z(ωn−2)

a(αn−1) b(βn−1) c(γn−1) 0 = s(σn−1) p(ρn−1) z(ωn−1)

Consider column A from the trace table. This column is simply a length-n vector of finite field
elements. We can think of this vector as the evaluation form of a unique polynomial a(α) with
degree (n1): the ith element of A corresponds to the evaluation a(αi).

Carlos LARA 11

SNARKs’ proof generation

Permutations over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge

• Phase 2 : Commit to the trace table
• Use polynomial commitments to “compress” each column into a short representation
• This also allows to generate proofs of evaluation : the prover can convince a verifier that the
polynomial passes through a particular point, without revealing the entire polynomial.

Trusted setup :

⟨G⟩ = EC(Fq)

l ∈ Z

τ ∈ Fp

(G, τ · G, τ 2 · G, . . . , τ l · G)

Computing the commitment :

A(α) → A(τ) · G

A(τ) · G =
n−1∑
i=0

ai × τ i · G

Lagrange-bases polynomials :

ℓi(χ) :=
∏
j ̸=i

χ− χj
χi − χj

∣∣∣∣∣
n

i=0

A(τ) =
n−1∑
i=0

a(αi)× ℓi(τ)

A(α) =
n−1∑
i=0

a(αi)× ℓi(τ) · G

Carlos LARA 12

SNARKs’ proof generation

Permutations over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge

• Phase 3 : “Prove” that the witness is correct
• The witness generated in phase 1 must obey certain properties to be valid.
• A short proof that the original witness satisfies these properties can be generated.

Let s(σi)×
ffl
k(a(αi), b(βi), c(γi)) = 0

∣∣n−1
i=0 ⇒ S(σ)×

ffl
k(A(α),B(β), C(γ)) = 0 (call it ϕk(χ))

Suppose k ∈ [0 . . .m) and ψ ∈ Fq ⇒ ϕ(χ) := ψ0 × ϕ0(χ) + ψ1 × ϕ1(χ) + . . .+ ψm−1 × ϕm−1(χ)

ϕ(χi) = 0
∣∣n−1
i=0 ⇔ ∃ ξ(χ) s.t. ϕ(χ) = ξ(χ)× (χn − 1)

ξ(χ) :=
ϕ(χ)

χn − 1 =
ψ0 × ϕ0(χ) + ψ1 × ϕ1(χ) + . . .+ ψm−1 × ϕm−1(χ)

χn − 1

The prover need to solve a few number theoretic transforms and more multi-scalar multiplications.

The verifier selects χ and verifies if ξ(χ) holds □

Carlos LARA 13

SNARKs and STARKs

Software results (2020):

SNARK STARK
Algorithmic complexity : prover O(N logN) O(N logk N)
Algorithmic complexity : verifier O(1) O(logk N)
Communications costs (proof size) O(1) O(logk N)
Prover time 2.3s 1.6s
Verification time 10ms 16ms
Trusted setup required Yes No
Post-quantum secure No Maybe
Cryptographic fundamental Bilinear pairings Hashes
Complex computations 80% MSM3, 15% NTT4 95% NTT

3Luo, G., Fu, S., & Gong, G. (2023). Speeding Up Multi-Scalar Multiplication over Fixed Points Towards Efficient zkSNARKs. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 358-380.
4Chung, C. M. M., Hwang, V., Kannwischer, M. J., Seiler, G., Shih, C. J., & Yang, B. Y. (2021). NTT multiplication for NTT-unfriendly rings: New speed records
for Saber and NTRU on Cortex-M4 and AVX2. IACR Transactions on Cryptographic Hardware and Embedded Systems, 159-188.

Carlos LARA 14

Multi-Scalar Multiplication

Pairing-friendly Elliptic Curves

• BLS12-377 curve

• Let a = 0 and b = 1
• E : y2 = x3 + 1 is defined over Fp with |p| = 377 and #EC(Fp) = 256
• Birationally equivalent to the Montgomery curve

M : sy2 = x3 + 3αsx2 + x where α3 + aα+ b = 0 and s = 1√
3α2 + a

• Birationally equivalent to the Twisted Edards curve

T : ax2 + y2 = 1+ dx2y2 where a =
3αs+ 2

s and d =
3αs− 2

s

Carlos LARA 15

Multi-Scalar Multiplication

MSM is the time-critical operation of SNARKs.

Solve

k0 · P0 + k1 · P1 + k2 · P2 + k3 · P3 + . . .+ kn−1 · Pn−1 =
n−1∑
i=0

ki · Pi

Carlos LARA 16

Multi-Scalar Multiplication

Pippenger’s algorithm5 allows to reduce the complexity of this operation and it only requires
elliptic curve point addition.

• Partition each ki into m parts such that each segment consists of c bits and m = ⌈|p|/c⌉

n−1∑
i=0

m−1∑
j=0

2jc × kji · Pi =
m−1∑
j=0

2jc
n−1∑
i=0

kji · Pi =
m−1∑
j=0

2jc × [k]P

• If we compute [k]P for each k the last step can be solved through Horner’s rule :

n−1∑
i=0

m−1∑
j=0

2jc × kji · Pi = 2c(. . . (2c(2c × [k− 1] · P+ [k− 2] · P) + [k− 3] · P) . . .) + [0] · P

• Thus the MSM is reduced to computing a series of elliptic curve point accumulations.
5Pippenger, N. (1976). On the evaluation of powers and related problems. In 17th Annual Symposium on Foundations of Computer Science (pp.
258-263). IEEE Computer Society.

Carlos LARA 17

Point addition

Elliptic Curve Point Addition

• For a generic elliptic curve E : y2 = x3 + 1

• Let (x1, y1) ∈ E(Fp) and (x2, y2) ∈ E(Fp)
• The addition of these two points is given by :

x3 =
(
y2 − y1
x2 − x1

)2
− x1 − x2 y3 =

(
y2 − y1
x2 − x1

)
(x1 − x3)− y1

• Using projective representation (xi, yi) → (Xi, Yi, Zi):

T2 = Z1 ∗ Y2 T1 = Z2 ∗ Y1 T = T2 − T1 U2 = Z1 ∗ X2 U1 = Z2 ∗ X1 U = U2 − U1

U0 = U ∗ U V = Z1 ∗ Z2 W = T ∗ T ∗ V− U0 ∗ (U2 + U1)

X3 = W ∗ U Y3 = T ∗ (U2 ∗ U0 −W)− T2 ∗ U3 Z3 = U3 ∗ V

• Cost : 14M + 6A

Carlos LARA 18

Elliptic Curve Point Addition

• For a twisted Edwards curve T : ax2 + y2 = 1+ dx2y2

• Let (x1, y1) ∈ T(Fp) and (x2, y2) ∈ T(Fp)
• The addition of these two points is given by

x3 =
x1y2 + y1x2
1+ dx1x2y1y2

y3 =
y1y2 − ax1x2
1− dx1x2y1y2

• Using extended representation (xi, yi) → (Xi, Yi, Zi, Ti):

A = (Y1 − X1) ∗ (Y2 − X2) B = (Y1 + X1) ∗ (Y2 + X2) C = 2d ∗ T1 ∗ T2 D = 2Z1

E = B− A F = D− C G = D+ C H = B+ A

X3 = E ∗ F Y3 = G ∗ H T3 = E ∗ H Z3 = F ∗ G

• Cost : 8M + 8A6
6Hisil, H., Wong, K. K. H., Carter, G., & Dawson, E. (2008). Twisted Edwards curves revisited. In 14th International Conference on the Theory and
Application of Cryptology and Information Security, Melbourne, Australia, December 7-11, 2008. (pp. 326-343). Springer Berlin Heidelberg.

Carlos LARA 19

Point accumulation in Hardware

Px

Py

Px=s(x-α)

Py=sPy

Short
Weierstrass

Mont.

Px=Px/Py

Py=(Px-1)/(Px+1)

Twisted
Edwards

Px=iPx

Py

Scaled
Edwards

Px

Py

Projective
Extended
Edwards

a,b,α,s A = 3αs
B = s

a = (A+2)/B
d = (A-2)/B

a' = -1
d' = -d/a

i = sqrt(-a)

Pt = PxPy

Pz = 1

Qx

Qy

Qx

Qy

Qt=d'QxQy

Px=Rx/Rz

Py=Ry/Rz

Scaled
Edwards

a' = -1
d' = -d/a

Px=Px/i

Py

Twisted
Edwards

a = -d/d'
d = -d'/a

Px=(1+Py)/(1-Py)

Montgomery

A = 2(a+d)/(a-d)
B = 4(a-d)

Py=(1+Py)/(Px(1-Py))

Short
Weierstrass

Px=Px/B+A/3B

a = (3-A2)/3B2

b = (2A3-9A)/27B3

Py=Py/B

Qx=s(x-α)

Qy=sQy

Qx=Qx/Qy

Qy=(Qx-1)/(Qx+1)

Qx=iQx

Qy

A=(Py-Px)*(Qy-Qx)

B=(Py+Px)*(Qy+Qx)

C=Pt*Qt

Rx=(B-A)*(Pz+Pz-C)

Ry=(B+A)*(Pz+Pz+C)

Rt=(B-A)*(B+A)

Rz=(Pz+Pz-C)*(Pz+Pz+C)

Carlos LARA 20

Elliptic Curve Point Addition

• For a twisted Edwards curve T : ax2 + y2 = 1+ dx2y2

• With some pre/post-computation (Xi, Yi, Zi, Ti) → ((Yi − Xi)/2, (Yi + Xi)/2, Zi, 4d ∗ Ti):

A = X1 ∗ X2 B = Y1 ∗ Y2 C = T1 ∗ T2 D = Z1

E = B− A F = D− C G = D+ C H = B+ A I = E ∗ F J = G ∗ H

X3 = J− 1 Y3 = J+ 1 T3 = E ∗ H Z3 = F ∗ G

• Cost : 7M + 6A

Carlos LARA 21

Point accumulation in Hardware

Px

Py

Projective
Extended
Edwards

Pt = PxPy

Pz = 1

Qx

Qy

Qt = QxQy

Qz = 1

Represent fpga point (x,y,z,t) as (2(y-x),2(y+x),4z,t)

Represent host point (x,y,t) as ((y-x)/2,(y+x)/2,4dt)

Qx=(Qy-Qx)/2

Qt = 4d'Qt

Qz = 1

Qy=(Qy+Qx)/2

A=Px*Qx

B=Py*Qy

C=Pt*Qt

D=Pz

E=B-A

F=D-C

G=D+C

H=B+A

I = E*F

J=G*H

Rt=E*H

Rz=F*G

2

2

Initialization

Every point

Rx=J-I

Ry=J+I

Rx=(Ry-Rx)/4

Finalization

Rx=(Ry+Rx)/4

Rz=Rz/40

4

Px

Py

Px=s(x-α)

Py=sPy

Short
Weierstrass

Mont.

Px=Px/Py

Py=(Px-1)/(Px+1)

Twisted
Edwards

Px=iPx

Py

Scaled
Edwards

a,b,α,s A = 3αs
B = s

a = (A+2)/B
d = (A-2)/B

a' = -1
d' = -d/a

i = sqrt(-a)

Qx

Qy

Qx=s(x-α)

Qy=sQy

Qx=Qx/Qy

Qy=(Qx-1)/(Qx+1)

Qx=iQx

Qy

Px=Rx/Rz

Py=Ry/Rz

Scaled
Edwards

a' = -1
d' = -d/a

Px=Px/i

Py

Twisted
Edwards

a = -d/d'
d = -d'/a

Px=(1+Py)/(1-Py)

Montgomery

A = 2(a+d)/(a-d)
B = 4(a-d)

Py=(1+Py)/(Px(1-Py))

Short
Weierstrass

Px=Px/B+A/3B

a = (3-A2)/3B2

b = (2A3-9A)/27B3

Py=Py/B

Carlos LARA 22

State of the Art

CycloneMSM7 Hardcaml8 PipeMSM9

Curve BLS12-377 BLS12-377 BLS12-377
Representation Montgomery R = 2384

Multiplier 3-layer Karatsuba 4-layer Karatsuba, 3-layer Karatsuba
Reduction Montgomery Barret Barret
P+ Q latency 96 cycles 200 cycles 115 cycles
Frequency 250 MHz 278 MHz 125 MHz

7Aasaraai, K., Beaver, D., Cesena, E., Maganti, R., Stalder, N., & Varela, J. (2022). FPGA Acceleration of Multi-Scalar Multiplication: CycloneMSM.
Cryptology ePrint Archive.
8https://zprize.hardcaml.com/
9Xavier, C. F. (2022). PipeMSM: Hardware acceleration for multi-scalar multiplication. Cryptology ePrint Archive.

Carlos LARA 23

Considering Montgomery representation

Px

Py

Projective
Extended
Edwards

Pt = PxPy

Pz = 1

Qx

Qy

Qt = QxQy

Qz = 1

Represent fpga point (x,y,z,t) as (2(y-x),2(y+x),4z,t)

Represent host point (x,y,t) as ((y-x)/2,(y+x)/2,4dt)

Qx=2k-1(Qy-Qx)

Qt = 2k+1d'Qt

Qz = 2k

Qy=2k-1(Qy+Qx)

A=Px*Qx

B=Py*Qy

C=Pt*Qt

D=Pz

E=B-A

F=D-C

G=D+C

H=B+A

I = E*F

J=G*H

Rt=E*H

Rz=F*G

2k+1

2k+1

Initialization

Every point

Rx=J-I

Ry=J+I

Rx=(Ry-Rx)/2k+2

Finalization

Rx=(Ry+Rx)/2k+2

Rz=Rz/2
k+20

2k+2

Px

Py

Px=s(x-α)

Py=sPy

Short
Weierstrass

Mont.

Px=Px/Py

Py=(Px-1)/(Px+1)

Twisted
Edwards

Px=iPx

Py

Scaled
Edwards

a,b,α,s A = 3αs
B = s

a = (A+2)/B
d = (A-2)/B

a' = -1
d' = -d/a

i = sqrt(-a)

Qx

Qy

Qx=s(x-α)

Qy=sQy

Qx=Qx/Qy

Qy=(Qx-1)/(Qx+1)

Qx=iQx

Qy

Px=Rx/Rz

Py=Ry/Rz

Scaled
Edwards

a' = -1
d' = -d/a

Px=Px/i

Py

Twisted
Edwards

a = -d/d'
d = -d'/a

Px=(1+Py)/(1-Py)

Montgomery

A = 2(a+d)/(a-d)
B = 4(a-d)

Py=(1+Py)/(Px(1-Py))

Short
Weierstrass

Px=Px/B+A/3B

a = (3-A2)/3B2

b = (2A3-9A)/27B3

Py=Py/B

Carlos LARA 24

Modular multiplication

Our approach

1. Use Montgomery representation with k = 384

2. Decompose the Montgomery product into a cell array10

3. Combine with carry-save addition

4. Perform a Montgomery product in 96 cycles

5. Target 333MHz (technology bound)

10Sutter, G. D., Deschamps, J. P., & Imaña, J. L. (2010). Modular multiplication and exponentiation architectures for fast RSA cryptosystem based on
digit serial computation. IEEE Transactions on Industrial Electronics, 58(7), 3101-3109.

Carlos LARA 25

Our approach
3104 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 58, NO. 7, JULY 2011

Fig. 1. Montgomery multiplication basic cell for d = 1, using CSA and precomputing q.

Algorithm 7—modified MP, precomputing q

Naturally, for a large number of bits (k), the carry-
propagation delay of (5) represents the critical path. Algorithm
8 is the corresponding CSA version of Algorithm 7. Fig. 1
shows the data path of a basic cell that implements Algorithm 8.

Algorithm 8—modified MP, CSA, q precomputed

Another way to reduce the computation time is using digit
serial computation. In this approach, at each iteration, d digits
are computed in parallel. Algorithm 9 implements the digit
serial version of MP. Note that now, quotient q is a d-bit
number.

Algorithm 9—Modified MP. Digit serial

TABLE I
CRITICAL PATH AND TOTAL THREE-INPUT FAs IN TOTAL TIME AS A

FUNCTION OF DIGIT SIZE d

The corresponding CSA version that includes the precompu-
tation of q of Algorithm 9 is represented in Algorithm 10.

Algorithm 10—modified MP, CSA, digit serial,
q precomputation

Now, the critical path is an addition of 2.d + 2 number.
Using carry–save representation for intermediate values and
neglecting the final addition, Table I shows the critical path
and total of full adders (FAs) (full addition, three to two
reductions) needed as a function of digit computed per clock
cycles. These theoretical results are degraded in real hardware
implementation due to a more complex routing.

Fig. 2 shows a general data path for a d-digit serial multiplier
that uses a d-digit Montgomery’s basic cell as a building block
(this architecture is also valid for d = 1).

Final Addition and Adjustment in Montgomery’s Multiplica-
tion: The proposed solution is to use two carry–skip adders and

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on April 21,2023 at 08:03:39 UTC from IEEE Xplore. Restrictions apply.

11

11Sutter, G. D., Deschamps, J. P., & Imaña, J. L. (2010). Modular multiplication and exponentiation architectures for fast RSA cryptosystem based on
digit serial computation. IEEE Transactions on Industrial Electronics, 58(7), 3101-3109.

Carlos LARA 26

Implementation results

PARAMETER Ours12 Hardcaml CycloneMSM
Word size 4 6 8 13 48
LUTs 7399 10847 14411 29161 43445
Use of the FPGA (%) 0.63 0.92 1.22 2.47 3.67
FFs 3151 3159 3172 53948 48361
Use of the FPGA (%) 0.13 0.13 0.13 2.28 2.05
DSPs 0 0 0 428 324
Use of the FPGA (%) 0 0 0 6.26 4.74
Target period (ns) 3 4 5 3.6 4
WNS (ns) 0.078 0.017 0.126 0.261 0.038
FMAX (MHz) 342 251 205 299 252
Latency (Cycles) 100 68 50 76 40
Throughput (Mbps) 1313 1417 1574 1511 2419

12Implemented for the AMD Virtex UltraScale+ FPGA available in the Amazon EC2 F1 Instances.

Carlos LARA 27

Considering carry-save arithmetic

Px

Py

Projective
Extended
Edwards

Pt = PxPy

Pz = 1

Qx

Qy

Qt = QxQy

Qz = 1

Represent fpga point (x,y,z,t) as (2(y-x),2(y+x),4z,t)

Represent host point (x,y,t) as ((y-x)/2,(y+x)/2,4dt)

Qx=2k-1(Qy-Qx)

Qt = 2k+1d'Qt

Qz = 2k

Qy=2k-1(Qy+Qx)

Ac,As=Px*Qx

Bc,Bs=Py*Qy

Cc,Cs=Pt*Qt

Ds=Pz

E=B-A
(CSA 4-1)

F=D-C
(CSA 3-1)

G=D+C
(CSA 3-1)

H=B+A
(CSA 4-1)

Ic,Is = E*F

Jc,Js=G*H

Rt=E*H

Rz=F*G

2k+1

2k+1

Initialization

Every point

Rx=J-I
(CSA 4-1)

Ry=J+I
(CSA 4-1)

Rx=(Ry-Rx)/2k+2

Finalization

Rx=(Ry+Rx)/2k+2

Rz=Rz/2
k+20

2k+2

Px

Py

Px=s(x-α)

Py=sPy

Short
Weierstrass

Mont.

Px=Px/Py

Py=(Px-1)/(Px+1)

Twisted
Edwards

Px=iPx

Py

Scaled
Edwards

a,b,α,s A = 3αs
B = s

a = (A+2)/B
d = (A-2)/B

a' = -1
d' = -d/a

i = sqrt(-a)

Qx

Qy

Qx=s(x-α)

Qy=sQy

Qx=Qx/Qy

Qy=(Qx-1)/(Qx+1)

Qx=iQx

Qy

Px=Rx/Rz

Py=Ry/Rz

Scaled
Edwards

a' = -1
d' = -d/a

Px=Px/i

Py

Twisted
Edwards

a = -d/d'
d = -d'/a

Px=(1+Py)/(1-Py)

Montgomery

A = 2(a+d)/(a-d)
B = 4(a-d)

Py=(1+Py)/(Px(1-Py))

Short
Weierstrass

Px=Px/B+A/3B

a = (3-A2)/3B2

b = (2A3-9A)/27B3

Py=Py/B

Carlos LARA 28

A general overview

Our work

Protocol type:
not interactive

Type:
Pairing based
cryptography

Class:
SNARK

Relevant operation:
Multi Scalar
Multiplication

MSM algorithm:
Pippenger
Relevant operation:

Point addition

Elliptic curve:

BLS12-377

Point representation:

R/W

Operand representation:
Montgomery
Multiplicaiton:
Montgomery cell array

ZERO-KNOWLEDGE ECC FIELD ARITHMETIC

Carlos LARA 29

Thanks !

	Motivation
	ZK in a nutshell
	ZK protocols
	Multi-Scalar Multiplication
	Point addition
	Modular multiplication
	A general overview
	Thanks !

