# X-Ray Fault Injection in non-volatile memories of Power Off Devices

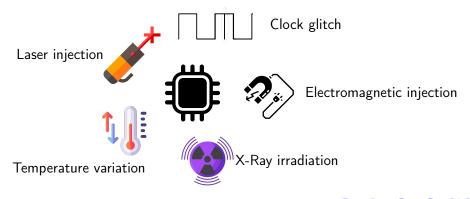
### Paul Grandamme<sup>1,2</sup>

PhD thesis supervised by Lilian Bossuet<sup>1</sup> and Jean-Max Dutertre<sup>2</sup>

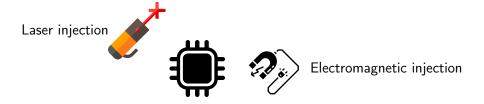
<sup>1</sup>Université Jean Monnet Saint-Etienne, CNRS, Institut d Optique Graduate School, Laboratoire Hubert Curien UMR 5516, F-42023, SAINT-ETIENNE, France <sup>2</sup>Mines Saint-Etienne, CEA Leti, Centre CMP, 13541 Gardanne, France








June 13<sup>th</sup> 2023


### Introduction

#### Fault Attack

Disturbing the device to modify its behavior to obtain information or disable internal protection mechanisms



### Introduction



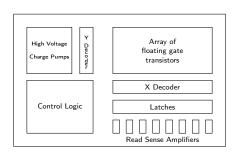
### **Benefits**

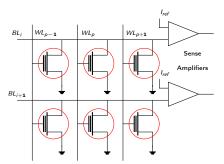
High time and spatial accuracy

### Limitations

The device must be powered  $\Rightarrow$  some countermeasures exist

### Advantages

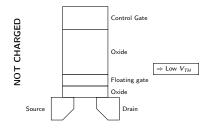

X-Ray can have an effect in non-volatile memories of power off devices

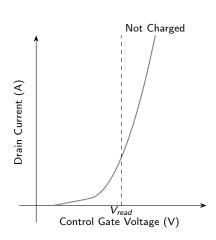

### Table of contents

- Flash memory, floating gate transistor and X-ray effects
  - Flash Memory and floating gate transistor
  - X-Ray effects on floating gate transistor
- 2 Experiments
- Results
- 4 Conclusion

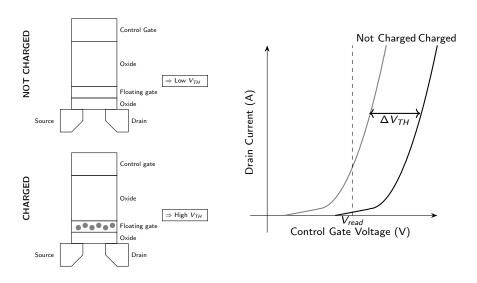
- Flash memory, floating gate transistor and X-ray effects
  - Flash Memory and floating gate transistor
  - X-Ray effects on floating gate transistor
- Experiments
- Results
- 4 Conclusion

# Usual organization of Flash memories

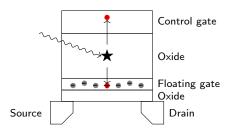



Floating gate transistors

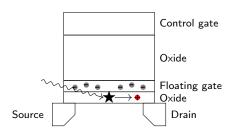

S. Skorobogatov, 'Optical Fault Masking Attacks', in 2010 Workshop on Fault Diagnosis and Tolerance in Cryptography, Santa Barbara, CA, TBD; IEEE, Aug. 2010, pp. 23-29

# Floating gate transistor



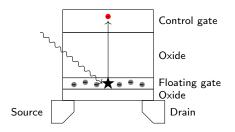



# Floating gate transistor




- Flash memory, floating gate transistor and X-ray effects
  - Flash Memory and floating gate transistor
  - X-Ray effects on floating gate transistor
- Experiments
- Results
- 4 Conclusion




#### Effect 1

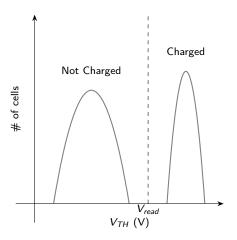
- e<sup>+</sup>/h<sup>-</sup> pair created by radiation is separated by the electric field
- one of them escapes through the control gate
- the other one is injected into the floating gate
- ⇒ recombination with stored charges
- ⇒ decrease of the charge



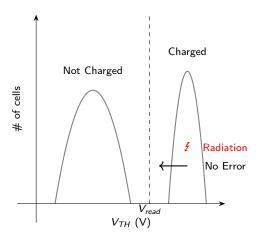
### Effect 2

- the charge can be trapped in the oxide
- Phenomenon is not significant because of the thinness of the oxides

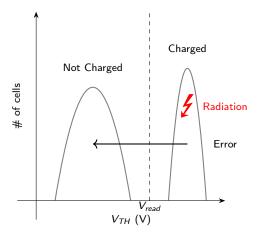



### Effect 3: photoemission

- charges stored in the floating gate get enough energy from the radiation to escape from the potential well
- $\Rightarrow$  decrease of the stored charge


### 3 different effects:

- electron-hole pair generation in the oxide
- charge trapping in the oxide
- photoemission

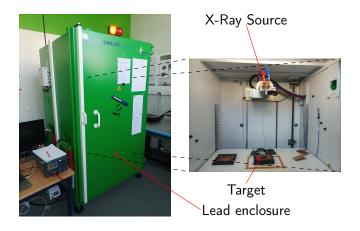

# Influence of ionizing radiation on the threshold voltage distribution



# Influence of ionizing radiation on the threshold voltage distribution



# Influence of ionizing radiation on the threshold voltage distribution

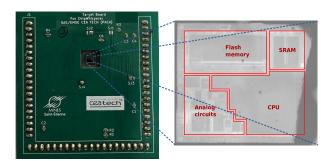



### Table of contents

- Flash memory, floating gate transistor and X-ray effects
- 2 Experiments
  - X-Ray setup
  - Targets
  - Protocol
- Results
- 4 Conclusion

- Flash memory, floating gate transistor and X-ray effects
- 2 Experiments
  - X-Ray setup
  - Targets
  - Protocol
- Results
- 4 Conclusion

# X-Ray irradiator

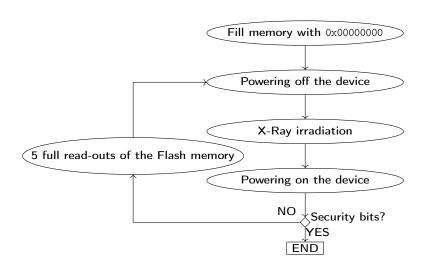



### Settings

- Tungsten (W) anode
- Source : 100kV and 45mA  $\Rightarrow$  photons with 40keV energy

- Flash memory, floating gate transistor and X-ray effects
- 2 Experiments
  - X-Ray setup
  - Targets
  - Protocol
- Results
- 4 Conclusion

# **Targets**




### Targets settings

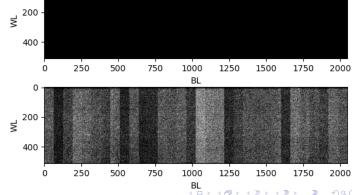
- 32-bit microcontroller with ARM Cortex-M3 core
- 128 kB of Flash memory (erase state : 0xFFFFFFFF)
- 2048 bitlines and 512 wordlines
- security bits preventing from reading memory if activated

- Flash memory, floating gate transistor and X-ray effects
- 2 Experiments
  - X-Ray setup
  - Targets
  - Protocol
- Results
- 4 Conclusion

### Protocol

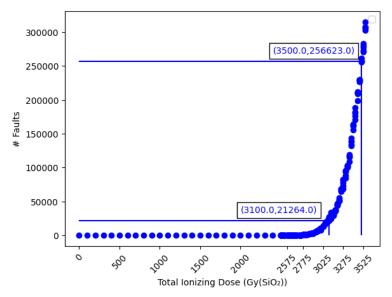


### Table of contents

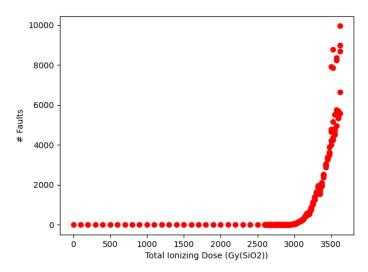

- Flash memory, floating gate transistor and X-ray effects
- 2 Experiments
- Results
  - X-Ray effects
  - Time and thermal recuperation
- 4 Conclusion

- 1 Flash memory, floating gate transistor and X-ray effects
- 2 Experiments
- Results
  - X-Ray effects
  - Time and thermal recuperation
- 4 Conclusion

# Bitsets in Flash memory


| Color | Bit Value | Faulty | FGMOS state |
|-------|-----------|--------|-------------|
| White | 1         | Yes    | Discharged  |
| Black | 0         | No     | Charged     |





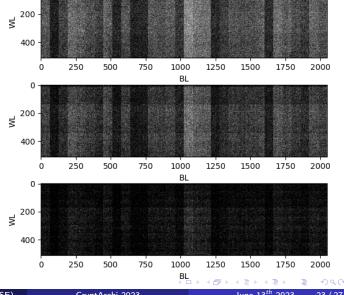

After irradiation:

# Faults in Flash memory

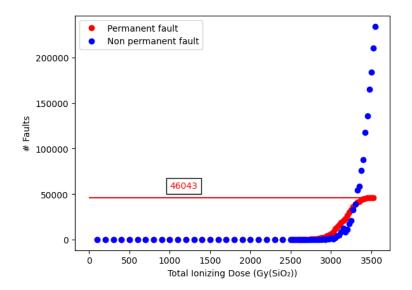


# Faults in EEPROM memory




- 1 Flash memory, floating gate transistor and X-ray effects
- 2 Experiments
- Results
  - X-Ray effects
  - Time and thermal recuperation
- 4 Conclusion

# Time and thermal recovery




After time recovery: 7 days @ room temperature

After thermal recovery: 2h @ 150°C



# Permanent VS non-permanent faults



### Table of contents

- 1 Flash memory, floating gate transistor and X-ray effects
- Experiments
- Results
- 4 Conclusion

### Conclusion

- X-Ray can have an effect on non-volatile memories of power off devices
- Exponential dependance between the total ionizing dose and the number of faults
- Thermal recuperation is possible for the non-permanent faults
- Permanent faults are due to the discharge of the floating gate transistors

Thank you for listening. Do you have any questions?

This work is funded by a french ANR program, along with the project POP.

Thanks to the MOPERE team (LabHC) for the acces to the X-Ray source.













Une école de l'IMT