

Is information leakage spilling?

Lilian Bossuet, Vincent Grosso, Carlos Lara

19th International Workshop on Cryptographic Architectures Embedded in Logic Devices Castro Urdiales, Spain

June 12, 2023

Université Jean Monnet Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, F-42023, SAINT-ETIENNE, France

Background

- Any computing device is, by nature, an agglomeration of physical phenomena
- there are magnitudes which can be seen and quantified when the system operates
- some of these measurements may be correlated with the data being processed¹
 - power dissipation
 - electromagnetic emanation
 - clock frequency
 - heat dissipation
- these data can be leveraged by an attacker to compromise the security of the platform

¹Mangard, S., Oswald, E., & Popp, T. Power analysis attacks: Revealing the secrets of smart cards (Vol. 31). Springer Science & Business Media.

Side Channel Attacks (cont.)

- Electromagnetic and power traces are most commonly used to conduct SCAs on cryptographic algorithms²
- these magnitudes fluctuate quickly enough to give a good indicator of the status of the device
- sophisticated equipment is needed to capture the information

²Mangard, S., Oswald, E., & Popp, T. Power analysis attacks: Revealing the secrets of smart cards (Vol. 31). Springer Science & Business Media.

Power footprint

Setup : ChipWhisperer Lite @ 96 MHz, iterative AES @ 4 MHz, Artix-7.

Power Analysis Attacks

- The principle behind power analysis is to find a statistical relationship between an algorithm and a set of observations from its implementation³
- we assume that the data we seek to retrieve has an impact on the power footprint of the system
 - conditional operations
 - loads
 - stores

³Kocher, P., Jaffe, J., & Jun, B. Differential power analysis. In *Proceedings of the 19th Annual International Cryptology Conference* Santa Barbara, California, USA, August 15–19, 1999 (pp. 388-397). Springer Berlin Heidelberg.

Power Analysis Attacks (cont.)

- with a large set of observations we can test multiple hypotheses *h_i* and select the most likely to be correct
- to reduce the size of these hypotheses we target small fragments g_i of the secret data
- for example, an AES-128 key is divided into 16 8-bit fragments where each has 256 possible values
- there are multiple attacks which employ this strategy, but the best known ones are differential power analysis and correlation power analysis

Correlation Power Analysis

Require: M an array of n inputs/outputs processed with an algorithm under analysis E **Require:** P an array $n \times m$ of power traces captured while processing of M **Ensure:** G an array of guesses for the secret materials of Efor $g_i \in G$ do for h = 0 to $\ell - 1$ do $W^h = \omega(\mu(M^{g_i}, h))$ $\{\omega : \text{Hamming weight}; \mu : \text{Leakage model}\}$ for s = 0 to m - 1 do $Q_s^h \leftarrow \rho(W^h, P^s)$ $\{\rho : \text{Correlation between two vectors of } n \text{ elements}\}$ end for end for $g_i \leftarrow \max(|Q|)$ {Select the hypothesis with the greatest correlation coefficient in any sample} end for

4

⁴ Brier, E., Clavier, C., & Olivier, F. Correlation power analysis with a leakage model. In *Proceedings of the 6th International Workshop on Cryptographic Hardware and Embedded Systems* Cambridge, MA, USA, August 11-13, 2004. (pp. 16-29). Springer Berlin Heidelberg.

Correlation Power Analysis : first round SBOX

Correlation Power Analysis : first round SBOX

Setup : TDC @ 250 MHz, iterative AES @ 10 MHz, Zynq-7000, 100K traces.

Correlation Power Analysis : first round SBOX

Setup : TDC @ 250 MHz, iterative AES @ 10 MHz, Zynq-7000.

Correlation Power Analysis : last round output

Correlation Power Analysis : last round output

Setup : ChipWhisperer Lite @ 96 MHz, iterative AES @ 4 MHz, Artix-7, 100K traces.

Correlation Power Analysis : last round output

Setup : ChipWhisperer Lite @ 96 MHz, iterative AES @ 4 MHz, Artix-7.

A: An area estimator for CPA

Looking closer at the hypotheses

Setup : ChipWhisperer Lite @ 96 MHz, iterative AES @ 4 MHz, Artix-7, 250k traces. Carlos LARA

Correlation behavior for a correct hypothesis

Setup : ChipWhisperer Lite @ 96 MHz, iterative AES @ 4 MHz, Artix-7, 250k traces.

Enhance!

Setup : ChipWhisperer Lite @ 96 MHz, iterative AES @ 4 MHz, Artix-7, 250k traces.

Looking closer at the hypotheses (cont.)

Setup : ChipWhisperer Lite @ 96 MHz, iterative AES @ 4 MHz, Artix-7, 250k traces.

Correlation Power Analysis revisited

Require: M an array n of inputs/outputs processed with an algorithm under analysis E **Require:** P an array $n \times m$ of power traces captured while processing of M **Require:** *e* the sample with the expected greater correlation **Require:** f_{s} the frequencies of the target and the sensor, respectively **Ensure:** G an array of guesses for the secret materials of E $\delta \leftarrow f_{\rm s}/f$ $\{\delta : \text{Samples per cycle of the target}\}$ for $g_i \in G$ do for h = 0 to ℓ do $W^h = \omega(\mu(M^{g_i}, h))$ $\{\omega : \text{Hamming weight}; \mu : \text{Leakage model}\}$ for $s = e - \delta$ to $e + \delta$ do $Q^s \leftarrow \rho(W^h, P^s)$ $\{\rho : \text{Correlation between two vectors of } n \text{ elements}\}$ end for $A^h \leftarrow \sum \left(|Q^s - \bar{Q^s}| \right)$ {Center and solve as a Riemann sum} end for $g_i \leftarrow \max(A)$ {Select the hypothesis with the greatest area} end for

Demo 1 : CPA results

Setup : ChipWhisperer Lite @ 96 MHz, iterative AES @ 4 MHz, Artix-7, 250k traces, LRM. Carlos LARA

Demo 1 : improved CPA results

Setup : ChipWhisperer Lite @ 96 MHz, iterative AES @ 4 MHz, Artix-7, 250k traces, LRM. Carlos LARA

Demo 2 : CPA results (different sensor, different target)

Setup : TDC @ 250 MHz, iterative AES @ 10 MHz, Zynq-7000, 220k traces, LRM. Carlos LARA

Demo 2 : improved CPA results (different sensor, different target)

Setup : TDC @ 250 MHz, iterative AES @ 10 MHz, Zynq-7000, 220k traces, LRM. Carlos LARA

Quantifying the improvement

Quantifying the improvement (cont.)

Carlos LARA

24

B: Bolstering the correlation area

Effects of the sampling frequency

24 samples per cycle

Setup : ChipWhisperer Lite @ 96 MHz, iterative AES @ 4 MHz, Artix-7, 250k traces.

4 samples per cycle

Setup : ChipWhisperer Lite @ 40 MHz, iterative AES @ 10 MHz, Artix-7, 250k traces.

4 samples per cycle

Setup : ChipWhisperer Lite @ 40 MHz, iterative AES @ 10 MHz, Artix-7, 250k traces.

Demo 3 : CPA results (4 samples per cycle)

Setup : ChipWhisperer @ 40 MHz, iterative AES @ 10 MHz, Artix-7, 250k traces, LRM. Carlos LARA

Demo 3 : improved CPA results (4 samples per cycle)

Setup : ChipWhisperer @ 40 MHz, iterative AES @ 10 MHz, Artix-7, 250k traces, LRM. Carlos LARA

Effects of the noise

Averaging 100 traces

Setup : ChipWhisperer Lite @ 96 MHz, iterative AES @ 4 MHz, Artix-7, 250k traces. Carlos LARA

Averaging 100 traces

Setup : ChipWhisperer Lite @ 96 MHz, iterative AES @ 4 MHz, Artix-7, 250k traces.

Averaging 100 traces

Setup : ChipWhisperer Lite @ 96 MHz, iterative AES @ 4 MHz, Artix-7, 250k traces.

Demo 4 : CPA results (average of 100 traces)

Setup : ChipWhisperer @ 96 MHz, iterative AES @ 4 MHz, Artix-7, 250k traces, LRM, average of 100 traces. Carlos LARA

Demo 4 : improved CPA results (average of 100 traces)

Setup : ChipWhisperer @ 96 MHz, iterative AES @ 4 MHz, Artix-7, 250k traces, LRM, average of 100 traces. Carlos LARA

Effects of the jitter

Miss-aligned traces

- Under certain scenarios the acquisition of traces is not perfectly synchronized⁵
- This introduces a jitter in the traces which affects CPA
- However, we suspect that this phenomenon can be leveraged to increase the correlation area
- Miss-aligned traces are bound to bundle together and produce a spill in the correlation matrix

⁵ Fellah-Touta, A., Bossuet, L. & Lara-Nino, C. A. Combined Internal Attacks on SoC-FPGAs: Breaking AES with Remote Power Analysis and Frequency-based Covert Channels. To appear in *Proceedings of the 8th IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)*, Delft, The Netherlands, July 3, 2023. (pp. 1–7). IEEE.

Miss-aligned traces (cont.)

Setup : TDC @ 200 MHz, iterative AES @ 10 MHz, Zynq-7000.

Correlation spill

s

Average of 100 traces

Intentionally miss-aligning some traces (by 4 samples)

Carlos LARA

39

Intentionally miss-aligning some traces (by 4 samples)

Demo 5 : CPA results (trigger-less traces)

Setup : TDC @ 200 MHz, iterative AES @ 10 MHz, Zynq-7000, 85k traces, FRM, average of 100 traces. Carlos LARA

Demo 5 : improved CPA results (trigger-less traces)

Setup : TDC @ 200 MHz, iterative AES @ 10 MHz, Zynq-7000, 85k traces, FRM, average of 100 traces. Carlos LARA

Final remarks

Conclusions

- We have proposed a new estimator for improving the performance of CPA
- Our approach relies on leveraging the information from lateral samples in the correlation matrix
- Pros : Improve the selection of the correct hypotheses
- Cons : If CPA does not work, it will not work. If CPA is good enough, you don't need this.

Acknowledgments

This work has been supported by the French government through the *Agence Nationale de la Recherche* in the framework of the *France 2030* initiative under project ARSENE (ANR-22-PECY-0004).

Thanks !