CryptArchi 2023

Is ASCON the best choice regarding the Side-channel Analysis?

Ing. Matúš Olekšák FIT CTU, Prague, Czech Republic

- Motivation
- NIST Lightweight cryptography standard
- ASCON overview

Other FinalistsConclusion

Motivation

- Internet of Things (IoT) is getting popular.
- There was no encryption standard for lightweight cryptography.
- National Institute of Standards and Technology (NIST) started challenge for the new standard of lightweight encryption to meet the requirements of IoT.
- One of the requirements for the upcoming standard was resistance against side-channel attacks.

- The winner was chosen from 10 finalists.
- In February 2023 NIST announced the winner of the challenge.
- **ASCON** was announced as the winner of challenge.

Overview of side-channel attacks on ASCON

[Gross, Wenger, Dobraunig, Ehrenhöfer, 2017]

- Attack on S-Box output of ASCON-x-low-area design.
- Successful attack on unprotected implementation with 500 power traces on average.
- With ASCON-fast design, authors had to attack on whole round transformation.
- Combined 128 distinct power analysis attacks using SAT solver and found secret key with 1,000 power traces on average.
- Attack on protected implementation was not successful even with over 1 million power traces captured.

[Ramezanpour, Ampadu, Diehl, 2020]

- ASCON was implemented on Artix-7 FPGA.
- Differential power analysis (DPA) unsuccessful with 40,000 power traces
- Correlation Power Analysis (CPA) unsuccessful with 40,000 power traces
- Side-Channel Analysis with Reinforcement Learning (SCARL) successful with 24,000 power traces

Overview of side-channel attacks on other finalists

[Vialar, 2022]

- Based on CPA.
- Reference C implementation was used without any protection on ARM Cortex-M4 microcontroller.
- Only around 30 power traces were needed for full key discovery.
- The attack is meant only for Dumbo and Jumbo variants. Delirium variant uses different permutation.

[Hou, Breier, Bhasin, 2021]

- Successful attack on GIFT-COFB.
- Differential No-Fault Analysis of Bit Permutation-Based Ciphers Assisted by Side Channel.
- It combines Differential Fault Analysis with Side-Channel Assisted Differential Plaintext Attacks.
- The attacker needs $2^{18.39}$ (~343,512) encryptions.

[Chakraborty, Mazumdar, Mukhopadhay, 2015]

- Successful attack realized on protected variants of Grain family algorithms.
- Combination of DPA and clock glitching.
- Trade-off between
 - number of resynchronizations of the cipher

exhaustive search for the remaining undetermined key bits.

[Ji, 2022]

- Side-channel evaluation of ISAP.
- Implementations used
 - software implementation by ISAP team
 - hardware implementation by IAIK
 - hardware implementation by Ruhr-University Bochum
- CPA attack was not able to recover private key under given implementations.

[Amit, Goutam, 2022]

- Fault attack with two different models random fault known fault
- Random fault model needs $2^{37.15}$ (~152 billion) of faulty queries.
- Known fault model needs only $2^{11.05}$ (~2,120), but the attacker needs to know faulty value.
- Both models resulted in successful attacks.

[Vialar, 2022]

- CPA attack on Romulus-N variant.
- Author attacked on SubCells of the second round to discover the 8 most significant bytes of the key.
- To get the rest of the key, it was needed to attack on SubCells at the third round.
- The attack is successful between 69% and 85% with number of traces between 1,800 and 2,400.

[Chen, et al., 2022]

- CPA and Deep Learning Power Analysis (DLPA) on SCHWAEMM256-128 variant.
- Authors measured 2,000 traces for each of 320 different private keys.
- They were unable to recover keys through CPA nor DLPA.

[Bhasin, et al., 2022]

- Differential Analysis aided Power Attack.
- In case of 32-bit architecture, authors were capable of discovery of 32 bits of private key.
- It is because of possibility to affect only 32 bits of Nonlinear Feedback Shift Register (NFSR).
- With 1-bit implementation authors retrieved full secret key.

[Batina, et al, 2022]

- CPA inspired by DPA attack called Keyak, which was based on Keccak-p.
- Measurement was made on Piñata development board with STM32F4.
- The publication is quite brief on Xoodyak CPA attack description.
- Conclusion is also missing in this publication. It did not result in a successful attack.

S \square Π

Algorithm	Publications	Attacks	Successful Attacks
ASCON	4	3	3
Elephant	3	2	1
GIFT-COFB	3	3	3
Grain-128AEAD	3	3	3
ISAP	3	1	0
PHOTON-Beetle	2	2	2
Romulus	2	1	1
Sparkle	2	1	0
TinyJAMBU	2	1	1
Xoodyak	3	1	0

Table summarizing number of side-channel related publications.

Conclusion

Side-channel attacks against ASCON has already been proposed and proved to be effective.

There are other finalists, which were not successfully attacked using side-channel attacks yet.

This may represent a weak spot of this standard in the future.

Thank you!

Do you have any questions?