
Markku-Juhani O. Saarinen
CryptArchi - June 13, 2023

@twitter

RISC-V Vector Cryptography and
Post-Quantum Cryptography Plans

Speaker

Markku-Juhani O. Saarinen
- Acting Post-Quantum TG Chair
- PQShield LTD, Oxford UK
- Professor of Practice, Tampere University FI

On behalf of:
- G. Richard Newell (Microchip Technology)
- Ken Dockser (Tenstorrent)

– CETG Chair & Vice Chair

Crypto Extensions

● Ratified in Late 2021: Scalar Crypto Extensions
○ Scalar, resource optimized: AES, SHA2, SM3, SM4, Entropy Source
○ Supporting Bit Manipulations (helps SHA3, Ascon, also CLMUL/GHASH)
○ Data Independent Timing (for scalar)

● Present: Vector Crypto Extensions (almost frozen)
○ Vector, performance optimized: AES, SHA2, SM3, SM4
○ Assorted arithmetic manipulations (+ helps SHA3, Ascon)
○ CLMUL and GHASH, Data Independent Timing for Vector

● Future:
○ Full-Rounds AES – for key management / side-channel
○ Post Quantum (Focus on Kyber and Dilithium)
○ Still classical RSA/ECC crypto? Other cipher suites?

Present:
Vector Crypto
“Frozen Soon”

Topics to be covered

1. Scope of the Current Instructions
2. Vector Element Groups
3. Vector-Scalar Instructions
4. Vector Crypto Extension Groups
5. Data Independent Execution Latency

Scope of The Current Extension

- AES-GCM in TLS provides bulk data confidentiality
(AES-CTR) and integrity (GHASH) for >50% of internet data.

- AES also for Storage (disk) encryption (XTS), DRBGs, etc.
- SHA2-256/512 for Certificate Processing, also integrity of

bulk data, content addressed storage, etc.
- ShangMi in China: SM4 (block cipher), SM3 (hash).

Advantages:
Lower network (or storage) latency, better energy
efficiency, security by addressing (timing) attacks.

Vector Extensions refresher
• 32 Vector registers

– register width (bits): VLEN (is ≥ 128 for “vk”)
• Vector register groups

– 1, 2, 4 or 8 registers used as a single operand
• Instructions

– Load/Store
– Set configuration (e.g., vl, vtype)
– operations on multiple elements

Vector Crypto can be built on any Vector Extension base
• “vk” with VLEN ≥ 256 is prefered
• ELEN<64 or XLEN<64 block some extensions

Element Groups (1)

• Provide support for data wider than 64-bits
• Vector Crypto has first extensions to adopt this concept

https://github.com/riscv/riscv-v-spec/blob/master/element_groups.adoc
Element Group Width (EGW): Total number of bits in an element group.
Effective Element Width (EEW): Number of bits in each element.
Element Group Size (EGS): Number of elements in an element group.

256 VLEN=256

128 128 EGW=128

32 32 32 32 32 32 32 32 EEW=32

3 2 1 0 3 2 1 0 EGS=4

7 6 5 4 3 2 1 0 vl=8

Vn Eg[1] Eg[0]

https://github.com/riscv/riscv-v-spec/blob/master/element_groups.adoc

Element Groups (2)

• Element groups can cross register boundaries by using register groups
– Enables narrower implementations to support larger EGW instructions

• Elements are still not allowed to cross register boundaries

64 VLEN=64

128 EGW=128

32 32 32 32 EEW=32

3 2 1 0 EGS=4

3 2 1 0 vl=4

Vn Eg[0]_lo LMUL=2

Vn+1 Eg[0]_hi

Element Groups in Vector Crypto

Instructions Extension EGW EEW EGS

AES Zvkned 128 32 4

SHA256 Zvknh[ab] 128 32 4

SHA512 Zvknhb 256 64 4

GHASH Zvkg 128 32 4

SM4 cipher Zvksed 128 32 4

SM3 hash Zvksh 256 32 8

Vector-Scalar instructions

• Allows an element group to be used as a scalar
• Re-uses the .vs suffix
• Applies scalar to each element group

– for example, one AES key could apply to all “lanes”

256

128 128

32 32 32 32 32 32 32 32

Va PlainText[1] PlainText[0]

Vb Key

“NIST” Selective Suites

Zvkned: NIST Suite: Vector AES Block Cipher

Zvknh[ab]:NIST Suite: Vector SHA-2 Secure Hash

Zvknc: NIST Algorithm Suite with carryless multiply

Zvkng: NIST Algorithm Suite with GCM

Zvkn: NIST Algorithms (Zvkned, Zvknhb, Zvbb, Zvkt)

“ShangMi” Selective Suites

Zvksed: ShangMi Suite: SM4 Block Cipher

Zvksh: ShangMi Suite: SM3 Secure Hash

Zvksc: ShangMi Algorithm Suite with carryless mult.

Zvksg: ShangMi Algorithm Suite with GCM

Zvks: ShangMi Algorithms (Zvksed, Zvksh, Zvbb, Zvkt)

Common Suites

Zvbb - Vector Bit-manipulation used in Cryptography
vandn.[vv,vx], vbrev.v, vbrev8.v, vrev8.v, vclz.v, vctz.v, vcpop.v, vrol.[vv,vx],
vror.[vv,vx,vi], vwsll.[vv,vx,vi]

Zvbc - Vector Carryless Multiplication
vclmul.[vv,vx], vclmulh.[vv,vx]

Zvkg - Vector GCM/GMAC (128-bit fixed modulus)
vghsh.vv, vgmul.vv

Zvkt - Vector Data-Independent Execution Latency

Zvkt DIEL
“Constant Time”

25+ Years of Timing Attacks
Examples over the years:

- P.C. Kocher: "Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems." (CRYPTO 1996. Target: RSAREF 2.0 running on MS-DOS.)

- D. Brumley and D. Boneh: "Remote timing attacks are practical."
(USENIX Security 2003. OpenSSL RSA remote key recovery, CVE-2003-0147.)

- B. Brumley and N. Toveri: "Remote Timing Attacks Are Still Practical."
(ESORICS 2011. OpenSSL ECDSA remote key recovery, CVE-2011-1945.)

- .. mature crypto implementations (e.g. OpenSSL) are nowadays mostly okay.

But new stuff keeps happening:
- Q. Guo, T. Johansson. A. Nilsson, "A key-recovery timing attack on post-quantum

primitives using the Fujisaki-Okamoto transformation and its application on
FrodoKEM." (Crypto 2020.)

Addressed via constant-time implementation techniques.

Sources of Timing leaks

1. Secret-controlled branches and loops:

if <secret> then { delay1(); } else { delay2(); }

2. Memory accesses (cache timing attacks). Can be a load or store.

ct = SBox[pt ^ key]; // observe latency with different inputs.

3. Arithmetic operations whose processing time just depends on inputs

x = y % q; // division and remainder ops are rarely constant-time.

Need Data Independent Execution Latency to process data.

Zvkt: Data Independent Latency

- One can use static analysis or dynamic variable tainting
(in emulator) to verify that compiled code is using only the
right (DIEL) instructions to handle secret data.

- But: ``Constant-timeness’’ of Intel and ARM instructions:
derived mostly from experiments. A lot of platforms..

- RISC-V CETG codified timing as the Zkt extension for
scalar, and the (brand new) Zvkt DIEL list for vector.

Zvkt DIEL Listings in Sect 2.14

All dedicated crypto instructions (Zk*) are DIEL. If a CPU asserts
Zvkt then these instructions are DIEL in relation to data operands:
- Vector Bitmanip in Crypto Spec: Zvbb, Zvbc
- General arithmetic: Add/sub, compare and set, copy, extend,

Boolean, multiply, multiply-add, integer merge, shift
- With limitations (only “data” registers): permute, slide

Excluded:
- All Load/store, floating point operations
- Clip, compress, divide, remainder, average, mask op, min/max,

multiply-saturate, reduce, shift round, vset, ..

Vector Crypto Status

https://github.com/riscv/riscv-crypto/releases
• Spec has done several rounds with the

Architecture Review; feedback incorporated
• Has binutils, Spike, OpenSSL support..

(Needs Architectural Compatibility Tests)
• Work will probably continue separately with

AES “All Rounds” instructions.

https://github.com/riscv/riscv-crypto/releases

RISC-V Summit
June 7, 2022

“RVA22 + vector + vector crypto”

Future:
Post-Quantum
Introduction

Post-Quantum (1 minute intro)

• RSA and Elliptic Curve decimated by quantum (Shor’s).

• Post-Quantum Cryptography (PQC) = Cryptography that
is not vulnerable to a quantum algorithms.

• Symmetric cryptography is not affected much (Grover’s)
– most current RISC-V Zk extensions are actually fine.

• ~2015 U.S. Government decided to transition to PQC.
NIST Standardization of PQC 2016-2024.

NIST Post-Quantum Standards

Selected July 2022, Standards 2023-2024.

Kyber (+ Round 4 KEMs)
Replaces EC(DH), RSA key establishment.

Dilithium, Falcon, SPHINCS+
Replaces EC(DSA), RSA signatures.

Especially for U.S. Government Entities:
- Active transition effort expected (presidential directives NSM-08, NSM-10).
- Regulations mandate FIPS 140-3 cryptography -> also for PQC modules.

National Security Systems (NSS)

Transition 2025-2030-2035:
“Note that this will effectively deprecate
[in NSS] the use of RSA, Diffie-Hellman
(DH), and elliptic curve cryptography
(ECDH and ECDSA) when mandated.”

Kyber & Dilithium: Arithmetic

• NTT (Number Theoretic Transform) uses butterfly
operations and a mul/add/sub mod fixed special q:

q=0xD01 (Kyber) q=0x7FE001 (Dilithium)

• Better SHAKE/SHA3: On an ARM microcontroller
~50% cycles is spent on the Keccak Permutation.

• Rejection sampling / bit gather (esp. for A matrix).

• Bitmanip (16- and 32-bit) shifts for CBD, bit packing.

Vector NTT: (mod q) arithmetic

• Montgomery technique used for (mod q) multiplication
requires widening, extra reduction multiplication, shift, add.

• Vector Single-Width Integer Multiply-Add Instructions for
mod q arithmetic (vmaccq, vnmsacq, vmaddq, vnmsubq).

Example Proposal:
vmaccq.vv vd, vs1, vs2, vm

vd[i] = +(vs1[i] * vs2[i])+vd[i] (mod q)

If SEW=16: q=0xD01, else if SEW=32: q=0x7FE001.
(or set modulus q in special register – Need experiments.)

Better SHA3 / Keccak? Samplers?

Scalar and vector crypto already have SHA3 support.
• In Zvk: vandn (Chi), vrol (Theta) are there for Keccak.
• With vrgather, vrgatherei (Pi) this reasonably good.
• Do we need even more speedup for permutation?
• SHA3 also for SPHINCS+, XMSS, LMS/HSS.

Look at gather / compress sequences for samplers:
• Dilithium: Extract a 24-bit segment, clear high bit (bit 23),

compare and select if x<q, expand to 32 bits for use.
• Kyber: 12-bit segment x, select x if x<q, expand to 16 bits.

PQC Workplan

• Elect officials (I’m the Acting Chair, Richard acting VC)
• Initial focus on Kyber and Dilithium which are a transition

priority. NIST Should be releasing Draft PQC Standards in
mid-2023 (yes, very soon) for Kyber and Dilithium.

• Do quantitative analysis with real-life benchmarks from PQ
TLS ciphersuites, certificate processing, etc use cases

• Don’t propose instructions unless they show advantage
• Proceed into freeze by the time NIST PQC Standards

review is complete (not many changes expected)
• Try to time RVI ratification shortly after NIST’s ratification

Thanks!
Questions?

Zvk instructions
(Background Extra)

AES instructions - Zvkns
EGW Mnemonic Description

128 vaesef.v[vs] vd, vs2 Vector AES encrypt final round

128 vaesem.v[vs] vd, vs2 Vector AES encrypt middle round

128 vaesdf.v[vs] vd, vs2 Vector AES decrypt final round

128 vaesdm.v[vs] vd, vs2 Vector AES decrypt middle round

128 vaeskf1.vi vd, vs2, uimm Vector AES-128 Forward KeySchedule

128 vaeskf2.vi vd, vs2, uimm Vector AES-256 Forward KeySchedule

128 vaesz.vs vd, vs2 Vector AES round zero (encrypt/decrypt)

- All Vector AES instructions have 2 source operands
- Vd is used as a source to save instruction encoding space

SHA-2 instructions - Zvknh[ab]

Extension SEW EGW Mnemonic Description

Zvknhb 64 256 vsha2ms.vv vd, vs2, vs1 Vector SHA-512 Message Schedule

Zvknhb 64 256 vsha2ch.vv vd, vs2, vs1 Vector SHA-512 Compression high

Zvknhb 64 256 vsha2cl.vv vd, vs2, vs1 Vector SHA-512 Compression low

Extension SEW EGW Mnemonic Description

Zvknha/b 32 128 vsha2ms.vv vd, vs2, vs1 Vector SHA-256 Message Schedule

Zvknha/b 32 128 vsha2ch.vv vd, vs2, vs1 Vector SHA-256 Compression high

Zvknha/b 32 128 vsha2cl.vv vd, vs2, vs1 Vector SHA-256 Compression low

Bitmanip - Zvbb (not Zvkb anymore)
Mnemonic Description

vclmul.v[vx] vd, vs2, vs1, vm Vector Carryless Multiply

vclmulh.v[vx] vd, vs2, vs1, vm Vector Carryless Multiply Return High Half

vrol.v[vx] vd, vs2, [vr]s1, vm Vector Rotate Left

vror.v[vx] vd, vs2, [vr]s1, vm
vror.vi vd, vs2, uimm, vm

Vector Rotate Right

vbrev8.v vd, vs2, vm Vector Reverse Bits in Bytes

vrev8.v vd, vs2, vm Vector Reverse Bytes

vandn.v[vx] vs2, [vr]s1, vm
vandn.vi vs2, imm, vm

Vector And-Not

More Bitmanip - Zvbb (via AR)
Mnemonic Description

vclz.v vd, vs2, vm Vector Count Leading Zeros

vctz.v vd, vs2, vm Vector Count Trailing Zeros

vcpop.v vd, vs2, vm Vector Population Count

vwsll.vv vd, vs2, vs1, vm
vwsll.vx vd, vs2, rs1, vm
vwsll.vi vd, vs2, uimm, vm

Vector Widening Shift Left Logical

GHASH instruction for GCM/GMAC - Zvkg

EGW Mnemonic Definition

128 vgmul.vv vd, vs2 GHASH Multiply

128 vghsh.vv vd, vs2, vs1 Vector GHASH Add-Multiply

vgmul computes vd*vs2 where * is a 128x128 carryless multiplication
reduced to 128 bits it by GHASH’s irreducible poly: x128 + x7 + x2 + x + 1.

The vghmac instruction performs a single iteration of the GHASHH algorithm.
It computes (vd ^ vs1) * vs2 with reduction as in vgmul.
(note: vghsh was previously vghmac, had a different order of multiply/add.)

SM3 Secure Hash - Zvksh
EGW EEW Mnemonic Definition

256 32 vsm3me.vv vd, vs2, vs1 Vector SM3 Message Expansion (8 rounds)

256 32 vsm3c.vi vd, vs2, uimm Vector SM3 Compression (2 rounds)

- vsm3me has 3 source operands
- vsm3c has 2 source operands

- There is 1 message expansion instruction for every 4 compressions
○ vslideDown can be used to provide the current word pair

- This approach was chosen as it is expected to be more performant than
having to execute 1 compression instruction per word pair.

SM4 Block Cipher - Zvksed
EGW Mnemonic Definition

128 vsm4k.vi vd, vs2, uimm Vector SM4 four Rounds Key Expansion

128 vsm4rv.[vs] vd, vs2 SM4 four Rounds Encryption/Decryption

- vsm4k has 2 source operands (one is an immediate)
- vsm4r has 2 source operands

