
Low-Latency (i)FFT RTL Implementation for the
FALCON Post-Quantum Signature Algorithm

Alexandre Ortega, Lilian Bossuet and Brice Colombier
Université Jean Monnet Saint-Etienne, CNRS, Institut d Optique Graduate School, Laboratoire Hubert Curien UMR 5516,

F-42023, SAINT-ETIENNE, France
{alexandre.ortega; lilian.bossuet; b.colombier}@univ-st-etienne.fr

I. INTRODUCTION

FALCON [1] is one of the three post-quantum digital signa-
ture schemes that have been recently standardized by NIST due
to the future threat that quantum computers pose to classical
cryptographic schemes [2]. Despite this, there is currently
no full hardware register-transfer level (RTL) implementation
of FALCON. One possible explanation is the rather unusual
requirement for a double-precision floating-point Fast Fourier
Transform (FFT) [3], which is used in FALCON to speed
up polynomial multiplication. In this work, we propose a
full RTL constant-time implementation of the FFT and its
inverse (iFFT), on FPGA, tailored for the specific context of
FALCON. Section II presents the FFT in the context of FAL-
CON before Section III describes the proposed architecture.
Afterwards, the performances of the proposed implementation
are detailed and compared with previous works in Section IV.
Section V concludes.

II. THE FAST FOURIER TRANSFORM IN FALCON

In FALCON, the FFT over the ring Q[x]/(ϕ) is used with
ϕ = xN + 1 and N = 2k a power of two. N is a security
parameter of FALCON that can be equal to either 512 or 1024.
Due to FALCON security requirements, IEEE-754 compliant
double-precision floating-point arithmetic is being used [1].
Using the fact that FALCON polynomials are in Z[x]/(ϕ),
as well as the roots of unity symmetry in Z[x]/(ϕ), the
storage requirements can be halved and more than half of the
computations can be omitted [1]. Before the optimizations, the
amount of computations to perform is:

#Ops = log2(N)× N

2
(1)

After applying the optimizations, (1) becomes:

#Ops = (log2(N)− 1)× N

4
(2)

III. DESCRIPTION OF THE PROPOSED HARDWARE
ARCHITECTURE

Fig. 1 shows the proposed hardware architecture. On top of
a reset and clock signals, the input signals are:

• start is used to make the component start the compu-
tation of either the FFT or the iFFT.

• inv is used to choose between performing the FFT or
the iFFT.

Control Unit

Polynomial
Coefficient

Addresses and
Root of Unity

Values
Storage Unit
(PCA-RUV-SU)

Butterfly Unit

Polynomial
Coefficients
Storage Unit

(PCSU)

{10, 12}

addr_ROMs

state

readystart

clk

rst
clk

clk

inv

state

3

addr_PCSU

2× {8, 9}

addr_coeffs

{8, 9}

count

state

3
4× 64

coeffs

coeff_in

64

in

state

3

out
coeffs

4× 64

÷(N/2)

64 0

1

inv

coeff_out

64

0

1

inv

2× 64

ω

Bit-
Flip

sign of
Im(ω)

Legend

blue: FALCON-512
red: FALCON-1024

Fig. 1. Block diagram of the proposed hardware architecture of the (i)FFT
for FALCON

• coeff_in is a 64-bit bus used to stream in the coeffi-
cients of the input polynomial to transform.

The outputs are:
• ready indicates that the component has finished per-

forming the computations and is streaming out the result.
• coeff_out is a 64-bit bus used to stream out the

coefficients of the result.
The proposed design is divided in four main blocks.
1) The butterfly unit: Made with three complex double-

precision floating-point operators, an adder as well as a
subtractor and a multiplier, it can be reconfigured dynamically
to perform either the radix-2 decimation-in-time FFT or the
radix-2 decimation-in-frequency iFFT.

2) The Polynomial coefficients storage unit: Two true dual
port RAMs are used to store the polynomial coefficients. One
RAM stores the real parts of the polynomial coefficients and
the other RAM stores their imaginary parts. For FALCON-
512, polynomials have 512 coefficients. Only the real and
imaginary parts for the first half of these coefficients are
stored as explained in Section II, so the two RAMs will
each store 256 double-precision floating-point values with 8-
bit addresses. A double-precision floating-point value is stored
on 64 bits (i.e. 8 bytes). Hence, the RAMs will each store



256 × 8 = 2.048 kB. An identical reasoning with FALCON-
1024 gives a 9-bit address bus and two RAMs each storing
512× 8 = 4.096 kB.

3) The Polynomial Coefficient Addresses and Root of Unity
Values Storage Unit: Four single-port ROMs and one dual-
port ROM are used to store the pre-computed coefficient
addresses in RAM and root of unity values. For each butterfly
operation, two complex coefficients and one complex root
of unity are used. Two single-port ROMs are used to store
the pre-computed coefficient addresses in RAM. Using (2), it
is determined that 1024 butterfly operations are required for
the 512-coefficient (i)FFT, and 2304 for the 1024-coefficient
(i)FFT. As the RAMs each store 256 values for the 512-
coefficient (i)FFT and 512 values for the 1024-coefficient
(i)FFT, an 8-bit wide adress bus, for the two ROMs, is required
for the 512-coefficient (i)FFT and an 9-bit wide address bus is
required for the 1024-coefficient (i)FFT. This gives a storage
requirement of 1024 × (8/8) = 1024 × 1 = 1.024 kB and
2304× (9/8) = 2.592 kB respectively for the 512-coefficient
and the 1024-coefficient (i)FFT.

The choice was made to only store once the 64-bit values
that can be used for either the real part or the imaginary part in
one dual-port ROM and to store the sequence in which those
values are used in two single-port ROMs. The reason for that
choice was to reduce the amount of memory required to store
the values needed for the root of unity. If the root of unity
values to be used are stored consecutively in a straightforward
manner, which means that repetitions are possible in the
dual-port ROM, 1024 × 8 = 8.192 kB are needed for the
512-coefficient (i)FFT and 2304 × 8 = 18.432 kB for the
1024-coefficient (i)FFT. If the root of unity values are stored
only once along with the order in which they are accessed,
382 values need to be stored in the dual-port ROM which
corresponds to 382× (64/8) = 3.056 kB, and 1024 addresses
coded on 9 bits in both single-port ROMs which corresponds
to 2 × 1024 × (9/8) = 2 × 1152 = 2.304 kB. This means
that this solution requires 3056 + 2304 = 5.36 kB of storage
capacity for the 512-coefficient (i)FFT, which is a reduction
of 34.6% compared with the straightforward solution. An
identical reasoning, gives a storage requirement of 11.888 kB
for the 1024-coefficient (i)FFT, which represents a reduction
of 35.5% compared with the straightforward solution. Hence,
instead of only one dual-port ROM, two single-port and one
dual-port ROMs are used to store the root of unity values.

Concerning the root of unity values for the iFFT, their real
parts are the same as the root of unity for the FFT and their
imaginary parts are of opposite sign. Hence, only the values
for the FFT are stored. When performing the iFFT the same
values are read from the ROM, but not in the same order.
Indeed, to perform the FFT operations, the addresses are read
consecutively starting from the highest value. To perform the
iFFT operations it is the opposite, the addresses are read
consecutively starting from zero. Additionally, the sign bit of
the imaginary part of the root of unity value is flipped.

4) The Control Unit: The control unit purpose is to manage
the dataflow of the (i)FFT.

TABLE I
(I)FFT-512/(I)FFT-1024 IMPLEMENTATION RESULTS

This work [4] Vivado 2023.2
Floating-point
precision Double Double Single

FFT length 512 1024 512 512 1024
LUT 9658 9677 8396 1741 1793
FF 369 374 2526 3468 3508
DSP 36 36 9 10 10
BRAM 8 11 9.5 4 5
Latency (cycles) 3074 6658 19800 4589 9474

IV. RESULTS AND COMPARISONS WITH PREVIOUS WORKS

The proposed hardware implementation is described in
VHDL and synthetised using AMD-Xilinx Vivado 2023.2.
Table I reports the implementation results of the proposed
design and compares it with the Vivado 2023.2 (i)FFT IP,
and a co-design implementation of FALCON (i)FFT for the
security parameter N = 512 [4]. The FPGA targetted, in all
the reported results in Table I, is the AMD-Xilinx ZCU104+
(xczu7ev-ffvc1156-2-e) FPGA. The fairest comparison is with
Mandal et al [4]. design as both design use double-precision.
Both have similar metrics for the LUTs and the BRAMs. The
proposed design uses 4× more DSP blocks but around 6.5×
less FFs and clock cycles. As expected when comparing the
proposed design to Vivado’s IP, which uses single-precision,
it uses around 2× more BRAMs, more LUTs and DSPs.
However, the proposed design uses around 10× less FFs and
achieves a lower latency.

V. CONCLUSION

A low-latency full hardware constant-time RTL implemen-
tation of the (i)FFT, tailored for FALCON parameters, was
presented. It achieves the best latency of the literature among
FPGA-based implementations. This work addresses one of
the major difficulties reported concerning the full hardware
implementation of FALCON. This work can be used as an
essential building block for future hardware implementation
works on FALCON.

ACKNOWLEDGMENT

This work received funding from the France 2030 program,
managed by the French National Research Agency under grant
agreement No. ANR-22-PETQ-0008 PQ-TLS.

REFERENCES

[1] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin,
T. Prest, T. Ricosset, G. Seiler, W. Whyte, Z. Zhang, et al., “Falcon:
Fast-Fourier lattice-based compact signatures over NTRU,” Submission to
the NIST’s post-quantum cryptography standardization process, vol. 36,
no. 5, pp. 1–75, 2018.

[2] NIST, “Nist Announces First Four Quantum-Resistant Cryptographic
Algorithms,” https://nist.gov/news-events/news/2022/07/nist-announces-
first-four-quantum-resistant-cryptographic-algorithms, 2022.

[3] L. Beckwith, D. T. Nguyen, and K. Gaj, “High-Performance Hardware
Implementation of Lattice-Based Digital Signatures.” Cryptology ePrint
Archive, Paper 2022/217, 2022.

[4] S. Mandal and D. Roy, “Design of a Lightweight Fast Fourier Transforma-
tion for FALCON using Hardware-Software Co-Design,” in GLSVLSI’24
Proceedings, pp. 228–232, 06 2024.


	Introduction
	The Fast Fourier Transform in FALCON
	Description of the proposed Hardware Architecture
	The butterfly unit
	The Polynomial coefficients storage unit
	The Polynomial Coefficient Addresses and Root of Unity Values Storage Unit
	The Control Unit


	Results and Comparisons with Previous Works
	Conclusion
	References

